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Abstract. Integrating heterogeneous patient-generated health data effectively is
pivotal for ensuring patient-centered care. This paper explores the potential of
large language models (LLMs) to streamline this integration by reducing the
labor-intensive ontology creation process. We propose a data mediator pipeline
that combines an LLM with an output validation mechanism to transform diverse
data formats into FHIR. Two prompt engineering strategies were evaluated for
structuring wearable-derived sleep data for clinical use. Our results demonstrate
that LLMs can generate valid FHIR representations, improving healthcare data
interoperability. However, challenges remain in handling complex data structures
requiring aggregation, affecting semantic accuracy. Future advancements should
focus on refining LLMs’ ability to process structured health data reliably, ensuring
seamless clinical integration. Despite these challenges, LLMs present a promising
approach to standardizing health data, ultimately enhancing patient-centered care
and decision-making.
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1 Introduction

The digital transformation of industries like healthcare (Wessel et al., 2021) promotes
data-driven concepts like patient-centered care (Ologeanu-Taddei et al., 2023; Weis-
senfels et al., 2025). A key challenge in this transformation is ensuring interoperability
across heterogeneous Hospital Information Systems (HIS) (Torab-Miandoab et al., 2023;
Rachuba et al., 2024) and facilitating the seamless incorporation of Patient-Generated
Health Data (PGHD) e.g. from wearable devices into clinical workflows (Sanders et al.,
2016). Despite the growing consensus on the benefits of PGHD in enhancing patient
care, its integration into HIS remains constrained by interoperability barriers (Khatiwada
et al., 2024). Poor interoperability leads to fragmented health information, negatively
impacting clinicians and patients. Incomplete or inconsistent data availability can re-
sult in misinformed medical decisions, hinder care coordination, and create obstacles
for patient self-management (Dinh-Le et al., 2019). Additionally, data sustainability is
becoming a key factor in healthcare, as PGHD should remain accessible throughout a
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patient’s lifetime and, ideally, beyond (Jarvenpaa and Essén, 2023). In sum, interoper-
ability challenges impose a significant financial burden, accounting for up to 25% of
healthcare costs in the US and EU due to inefficient data exchange (Pidun et al., 2021).

To tackle the interoperability issue, it is important to distinguish between the four
commonly recognized levels of interoperability (Ukena and Alt, 2024): (1) Technical
interoperability refers to the basic ability of systems to exchange data through compati-
ble technical infrastructures (Lilleng and Centre, 2005). (2) Syntactic interoperability
ensures that data exchanged between systems follows a shared structure or format
(Lilleng and Centre, 2005). (3) Semantic interoperability ensures that the meaning of ex-
changed data is preserved and interpreted consistently across systems, typically through
shared ontologies or medical terminologies (Lilleng and Centre, 2005). (4) Organiza-
tional interoperability involves the alignment of institutional policies, legal agreements,
and collaborative practices that enable effective data sharing between organizations
(Adebesin et al., 2013).

To illustrate the interoperability challenge further, consider a patient with sleep prob-
lems who consults a physician: analyzing the PGHD could help the physician gain deeper
insights into the patient’s problems. For this purpose, the PGHD must be exchanged
between the patient’s wearables and the HIS in the clinical institution. A CSV export of
the PGHD would ensure technical interoperability, representing the initial stage among
the four levels of interoperability (Lilleng and Centre, 2005). Technical interoperability
is usually less of an issue (Sunyaev et al., 2023), but even when data can be exchanged
technically between the wearable and the HIS, that data remains unstructured and needs
further processing before the physician can analyze it. If wearables could output the
data in a structured format like JavaScript Object Notation (JSON) with predefined
vocabulary and grammar, e.g. for the sleep start time, the second level of interoperability
would be reached (Lilleng and Centre, 2005). However, the predefined fields may differ
among different wearables, therefore the interpretation remains challenging. Convert-
ing the wearable data into established data standards in the healthcare sector like Fast
Healthcare Interoperability Resources (FHIR) and using Systematized Nomenclature of
Medicine Clinical Terms (SNOMED CT) codes to define the resources (Mildenberger
et al., 2002) marks the third level of interoperability, as it ensures that information has
the same meaning regardless of which system processes the data (Lilleng and Centre,
2005). The fourth level of interoperability is called organizational (Whitman et al.,
2006) or pragmatic interoperability, as explained above. It describes the willingness and
commitment of all involved organizations to collaborate (Adebesin et al., 2013). In the
case of sleep data exchange, it would mean that wearable and HIS providers agree to
cooperate. While levels 1-3 of interoperability mainly depend on technical aspects, the
fourth level also depends on management aspects. To unlock the full potential of PGHD
for patient-centered care, at least the third level of interoperability is required.

A common approach to ensure interoperability is standardization. The primary draw-
back of standardization lies in its practical implementation. In particular, the commitment
to fully adopting comprehensive standards to ensure semantic interoperability (Scheer
and Habermann, 2000). Despite a commitment to a comprehensive standard, the diversity
of individual systems often leads to scenarios where the degree of specialization in the
standard falls short of achieving semantic interoperability, as the standard permits too



much variation (Sunyaev et al., 2023). In other words, the agreed standards lack quality
(Folmer et al., 2011).

2 Research Gap

Intelligent systems have the potential to automatically transform information from
syntactical to semantic interoperability standards (Sunyaev et al., 2023). Using such
interoperability support tools might be easier than having multiple vendors agree on
a highly specialized standard. The transformation process between input and output
within these tools may be seen as a mapping (Khan et al., 2014), based either on simple
manual mappings or more advanced ontologies (Roussey et al., 2011; Grethe et al., 2009;
Zaremba et al., 2008; Kawu et al., 2023). However, ontologies are domain-specific and
have no generalization abilities. Their creation still involves much manual effort and
requires domain knowledge (Jaulent et al., 2018). Due to the fast-paced wearable market,
including all proprietary wearable standards into these ontologies remains complicated.

This leads to the question whether recent advancements in Artifical Intelligence (AI)
technologies have the potential to contribute to semantic interoperability with regards to
the integration of PGHD. This mapping task is comparable to translation in Natural Lan-
guage Processing (NLP): In NLP, a German, English, and Spanish sentence represents
the same meaning in a language-specific syntax. To achieve semantic interoperability, a
translation application should transfer the meaning of a sentence into various languages
by adapting the syntax. The task for the data mediator is similar: the system should trans-
fer the meaning of information presented in a device-specific syntax into a standard for
semantic interoperability. Transformer architectures have shown superior performance
in NLP translation tasks (Vaswani et al., 2017). Large Language Models (LLMs) rely on
the transformer architecture to build models to create textual data (OpenAl et al., 2024).
Thus, this paper hypothesizes that LLMs can help to automate the mapping of PGHD
into FHIR and formulates the following research question:

RQ: To what extent can LLMs improve the integration of heterogeneous PGHD
for patient-centered care?

To answer this research question, we combine an LLM with prompt engineering to build a
pipeline that transforms PGHD from multiple wearables with heterogeneous data output
into standardized FHIR, a highly specialized standard widespread in the healthcare
industry, which supports a large information model and, therefore, aims at semantic
interoperability (Leroux et al., 2017). To address hallucinations, the pipeline includes
a validation step that ensures the LLMs output adheres to the formal requirements of
the FHIR standard. Since the proposed pipeline utilizes only pre-trained components,
no additional training data, such as fine-tuning, is required, allowing for immediate
application with minimal effort.



3 Related Work

3.1 FHIR

FHIR is becoming a significant interoperability standard in healthcare (Ayaz et al., 2021).
It aims to exchange healthcare information in a standardized and modular way (Williams
et al., 2023). By using an HTTP-based Representational State Transfer (REST)-ful
protocol and supporting different data representations such as XML or JSON, FHIR
implements established standards at the technical and syntactic interoperability lay-
ers. To ensure semantic interoperability, it leverages terminology providers such as
SNOMED CT or Logical Observation Identifiers Names and Codes (LOINC) and sup-
ports the representation of clinical concepts (Leroux et al., 2017). A main building
block in FHIR is the observation resource, which is used to represent measurements or
assertions about a subject. This can include vital signs, lab results, or PGHD such as
sleep metrics. Each observation consists of key elements that enable the consistent repre-
sentation and interpretation of observational data across systems, making it a valuable
element for integrating PGHD into clinical workflows (Vorisek et al., 2022).

3.2 Interoperability in Healthcare

In practice, implementing an HIS for hospital A may be incompatible with the imple-
mentation for hospital B, even if both HISs are from the same vendor. Information
exchange between heterogenous HIS is challenging, as information compatibility can
not be granted (Sunyaev et al., 2023). Several approaches exist to translate informa-
tion in a syntactic interoperability standard into semantically interoperability standards
like FHIR. Using traditional Electronic Data Interchange (EDI) converter solutions
has become a more advanced way to perform such translations. For example, Allocca
et al. (2022) proposed a system that aims to translate guidelines on physical activity
into an FHIR-compatible framework. Similarly, Pfaff et al. (2019) used ontologies and
rules to transform clinical data into FHIR. Hong et al. (2019) introduced a pipeline to
translate unstructured Electronic Heath Records (EHR) data into FHIR using mapping
rules, normalization rules and an NLP-specific FHIR extension. To address the challenge
of manual effort in creating ontologies and rules, Kamala et al. (2020) employed the
Word2Vec architecture (Mikolov et al., 2013) to generate word embeddings from textual
data. These word embeddings were then leveraged to analyze the similarity of words and
find words with similar meanings. However, using Word2Vec has the drawback that the
word embeddings do not represent contextual information about the usage of the word
(Corréa and Amancio, 2019), which may harm the potential of their approach.

3.3 LLMs for Interoperability

Applying LLMs for applications that convert textual input data into a desired semantic
interoperability standard has already seen some contributions in research. For example,
Yoon et al. (2024) used unstructured EHR records and translated them into FHIR. The
proposed approach relied on role-prompting and achieved better results than a rule-based



translation. At the same time, using a LLM greatly decreases the reliance on manual
labor compared to approaches based on handcrafted rules. Li et al. (2023a,b) expanded
on this concept by employing more advanced prompt engineering techniques. They
provided the LLM with task instructions, an FHIR template, four to five examples for
the FHIR translation, a list with terminology codes and the input text which should be
translated. For evaluation purposes, they validated the output of their LLM using the
official FHIR validation checker. Their results attribute LLMs abilities to solve such
standard translation tasks in general, which underlines our hypothesis that LLMs may
be used to automate the mapping between sleep data and FHIR. Large-sized models
achieved better results in their experimental setting than smaller models. Further, they
found that even when terminology codes are provided, the LLM sometimes tends to
hallucinate and use terminology codes which are invalid or do not exist. However, this
work is focused only on EHR data. It does not consider wearable data, possibly including
a larger variety as it underlies fewer regulations than medical products.

4 Architecture

4.1 Pipeline

Our pipeline can be found in Figure 1. For the LLM, we decided to use OpenAl’s 40
mini model, the lightweight version of the 40 model, which offers a significantly lower
cost per inference compared to the full-size 40 model ($0.150 compared to $5.00 for
IM input tokens). We hypothesize that introducing the FHIR-mediator and following
the self-refinement strategy (see section 4.2) could bridge the performance gap between
small and full-size models by keeping the costs low. However, our pipeline works in
principle with all LLMs. Thus, it could also be implemented with a local-hosted LLM to
have complete control over the data processing.

To address hallucinations, a general problem to LLMs (Tonmoy et al., 2024) and
also explicitly mentioned in Li et al. (2023b) for the FHIR translation task, we integrate
a FHIR-validator, which should trigger the LLMs self-refinement abilities (Du et al.,
2024). The work of Madaan et al. (2023) inspired the idea of integrating a validation
mechanism. It should ensure that the model output matches the FHIR standard and can
be seen as a form of self-refinement through feedback and reasoning (Tonmoy et al.,
2024). This validator checks if the format follows the FHIR-standard and also verifies
that the terminology codes from providers like SNOMED CT or LOINC exist and that
their displayed names are correct. This is important, as prior work found that LLMs
sometimes tends to invent codes which do not exist (Li et al., 2023b). Given an input,
the LLM creates the FHIR representation of the input and the FHIR-validator returns
whether the input is valid. In the latter case, an error message is returned, specifying
which part of the input did not match the FHIR standard and why. The LLM can then
use this error message to correct its output. The validation mechanism returns only valid
FHIR. Unlike agentic Al solutions, where LLMs have access to various tools and can
decide which ones are needed to solve a given task, our FHIR validator is an integral,
fixed component of the pipeline and is therefore applied to every request.



To create our application, we used the LangChain framework (Chase, 2022). The
LLM was accessed using the OpenAl API. The validation mechanism itself is a function
which uses an API to access the official FHIR-validator from HL7. This pipeline could
be integrated as middleware or proxy, receiving PGHD in any format and outputting it
in standardized FHIR, allowing seamless integration into the HIS.

Our data mediator pipeline starts with system input from our dataset (see section
5.1). The input may contain special characters, such as newlines or tabs, confusing the
model. To address this, the input undergoes parsing, during which any unwanted tokens
are removed. LangChain offers tools to do that directly. For clarity, the aforementioned
parsing steps have been excluded from the pipeline visualization. Once the input is
parsed correctly, it is used to construct the model input, respectively, the prompt. We
used different prompting strategies explained in section 4.2. Based on the prompt, the
LLM produces an FHIR output. In some cases, the model produces output that includes
extraneous strings, resulting in an invalid JSON representation. Therefore, we apply
the parsing mechanism again before the output is fed into the FHIR-validator. If the
FHIR-validator returns that the output is valid FHIR, our pipeline returns the LLM’s
output, and the process is finished. If the LLM has not produced a valid FHIR, the
corresponding error message is then used to construct a correction prompt. Based on this
correction prompt, the LLM produces a new output, again fed into the FHIR-validator.
We allow the model to use up to five iterations of this cycle. The pipeline cancels the
translation process if the LLM cannot output a valid FHIR after five iterations. It stores
the output with the information that no valid FHIR could be generated.
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Figure 1. Architecture of proposed LLM-based data mediator.

4.2 Prompting Strategies

To tailor the pre-trained LLM to our task, we enhance the model’s performance through
prompt engineering. We deliberately avoid techniques that modify the initial weights of



LLMs, such as fine-tuning (Hu et al., 2022; Dettmers et al., 2023; Zhang et al., 2023)
and minimize reliance on specialized training data, as obtaining such data is challenging
in practice, particularly in critical domains like healthcare. This paper proposes and
compares two prompt engineering strategies to solve the FHIR-translation task. The first
strategy can be seen as a form of few-shot learning, where a few examples of input-output
pairs are given to the model, so that it can quickly adapt to a new task (Parnami and
Lee, 2022). As shown in Figure 2, the system prompt includes some general instructions
about the task. In the user prompt, the model is asked to convert an input included in
this prompt to FHIR. To match the few-shot paradigm, we provide the model with five
examples of transforming different inputs into FHIR. The second strategy is based on
reasoning (Huang and Chang, 2023) and inspired by the findings from (Yue Wu et al.,
2023). Instead of providing the model with concrete examples of how a transformation
to FHIR looks like, the model receives a guideline on transforming information into
the FHIR standard. The system prompt includes these implementation guidelines and
general role instructions. The user prompt remains the same as in the first strategy, except
no transformation examples are provided. If the FHIR-validator drops an error, indicating
that the model output did not meet the requirements for valid FHIR, we use a correction
prompt to refine the model output. It mainly comprises general instructions and the
corresponding terminology codes. Additionally, the prompt refers to the FHIR-validators
error message.

Few-Shot Prompt

Reasoning Prompt

Correction Prompt

Your task is to convert given sleep data into a FHIR
Observation represented as JSON.
You are only allowed to use the following SNOMED-CT
codes to represent sleep stages:

8005"
9373008"
0984000"
9129007"
8220008"

" "12262002

"Aslecp":
"Restless s

Instructions:

Only output FHIR-compliant JSON: Your output must
be a valid FHIR Observation resource in JSON format,
containing only the relevant SNOMED-CT codes listed
above.

2. No additional text or format: Do not include any other
text, explanation, or format outside of the JSON structure

You are a useful assistant tool, which converts textual inputs
with different structures into FHIR observations.
Here is the JSON schema of FHIR Observations with
information about cach entry:
#i### BEGIN JSON SCHEMA ###

#i## END JSON SCHEMA ###
Follow this schema to convert the textual input to a FHIR
observation.

Do not return multiple FHIR observations, instead use the
component field to represent multiple observations.
For the overall observation code use the following: { {
“system": "http:/loinc.org", "ci 3832-4", "display":

"Sleep duration” }}
You are only allowed to use the following SNOMED-CT
codes to represent sleep stages:

You only return the converted observations with no textual
context to them

Your task is to reflect on the given FHIR Observation and
identify any errors or issues.
You are only allowed to use the following SNOMED-CT
codes to represent sleep stages:

Instructions:

1. Correct the issues to make the FHIR valid: Use the

invalid FHIR you recieved to solve the issues using the

reasons provided in the "issues" key.

Only output FHIR-compliant JSON: Your output must

be a valid FHIR Observation resource in JSON format,

containing only the relevant SNOMED-CT codes listed

above. If you encounter a invalid code, replace it with the

correct one from the list.

3. No additional text or format: Do not include any other
text, explanation, or format outside of the JSON structure,

~

Figure 2. Prompting approaches integrated into the data mediator.

S Data and Experiments

5.1 Data

To develop the concept and prototype for a LLM-based mediator that integrates between
PGHD and HIS, this research has emerged from an applied project where sleep data is
collected to improve sleep quality. During this project, subjects tracked their sleep and
daylight activities using a Fitbit, Withings smart mattress, questionnaires, and multiple
sensors over ten months. The sleep data in this context refers to measurements related to
a user’s sleep for a given period (usually a night). Typical examples for sleep data are



the different sleep phases like Wake, Light, Deep and REM sleep, as well as how long
the user spends time in each phase or how often each phase occurs during the period.
Even when most healthcare wearable market vendors offer the option to export their
data as JSON or CSYV, this is not sufficient for semantically interoperability. Consider
the time a user spends awake during the night, called "wake" in the Fitbit syntax, while
Withings designates the exact measurement as "wakeupduration”. This issue illustrates
that directly processing this data, e.g. into EHR, is nontrivial.

To the best of our knowledge, no public benchmark dataset is available for that kind
of task. Therefore, we created our own dataset by randomly sampling 600 observations
from the eSleepA' research projects’ database. eSleepA aims to integrate multiple het-
erogenous data sources into a single system to provide sleep assistance. The database
where we sampled our observations includes data collected form 20 participants, who
submitted the data of different devices and questionnaires for 300 days each. The 600
samples in our dataset split as follows: 100 sleep observations from each Fitbit and
Withings were represented in JSON format. The JSON formatted samples have the most
complex structure among our datasets, as they either require combining multiple sleep
observations of the same stage into one or mediating a lot of observations into FHIR.
Additionally, we used 100 observations each to create CSV-formatted data. Further, we
used 100 observations to create free-text TXT data and another 100 observations for
Extensible Markup Language (XML) data, representing sleep observations in natural
language, a known input structure for LLMs. The corresponding FHIR data was gener-
ated using a Python code with a pre-defined mapping. We validated the FHIR data using
the official FHIR validator and reviewed it manually to ensure that this ground truth data
is valid FHIR. Our dataset contains 600 sleep observations in different formats and their
corresponding FHIR representation.

5.2 Experiments and Metrics

We propose the following task to evaluate the model’s performance: Given sleep data as
input, the model should translate them into FHIR. The task contains two challenges for
the LLM: outputting valid FHIR and mapping the values from the input to the correct
terminology codes and values. Sometimes, it may also be necessary to aggregate values
from the input to a FHIR resource. While the performance for the first challenge depends
on both the LLM and the FHIR validator, the performance for the second challenge
depends purely on the LLM’s capabilities to identify and map the values from the input
correctly. To evaluate the performance of the data mediator, we defined the following
experiments: Experiment E1 observes the performance of our pipeline in combination
with the described few-shot strategy. For E2, we replace the few-shot strategy with the
reasoning strategy. To assess the task-related performance of our model, we used the
following metrics:

— Validity Rate: measures the proportion of the model’s output that is valid FHIR. We
checked the output using the official FHIR-validator. An output is considered valid
if it follows the FHIR scheme and the terminology codes are valid. The validity rate
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is defined as follows:

valid output

Validity Rate = (D)

total inputs

Given this definition, the best possible validation rate is 1.0 when all outputs are
valid FHIR. Vice versa, a validity rate equal to 0.0 means that none of the outputs is
valid FHIR. Additionally, we computed the validity rate for the first output of the
model and denoted it with a . Thus, it represents the performance of the LLM without
the FHIR-validator and the correction prompt. Therefore, it allows conclusions about
the contribution of these components.

— Semantic Accuracy Rate (SAR): measures the proportion of the model’s output
that is semantically accurate. The SAR is assessed by comparing the model’s output
against our data set’s ground truth FHIR representations. To do so, we compare the
observations generated by our model with the observations in the ground truth. This
ensures that the values for the observations are mapped and aggregated correctly
and that all input measurements are transferred to the output. We defined semantic
accuracy as follows:

semantically accurate observations
SAR —= Y

total observations @

— Correction Count: represents how often the FHIR validator was called until the

LLM produced valid FHIR output. If the correction count is 0.0, the LLMs output

was valid FHIR instantly. A correction count of three means the validator was called

three times, so the model’s fourth output was valid FHIR. As mentioned earlier, we

allowed the LLM up to five outputs so that the maximum correction count can be
4.0.

Note that the validity rate is computed over all model outputs. One model output usually
contains multiple observations within the component object, so the other two metrics
are computed per FHIR-resource. We run each experiment five times as the LLM output
is not deterministic. If the FHIR-validator returns an error, we allow the model four
additional shots to refine its output. If the model can not output valid FHIR after five
iterations, the generation is halted and moved on to the next input.

6 Results and Discussion

6.1 Results E1

The results for experiment E1 are in table 1, and the corresponding standard deviation
is shown in brackets behind the metric. We used the few-shot promoting strategy for
experiment E1. When looking at the overall validity rate averaged over five runs, it can
be found that our pipeline achieves a validity rate of 0.994 with a standard deviation of
0.079. As the validity rate is close to 1.0 (best possible result) and the standard deviation
is relatively low (0.0786), we conclude that the few-shot strategy can output valid FHIR
constantly. Observing the different input formats, we saw that the LLM struggles with
translating Withings data in JSON format into FHIR. Using this data, the model achieved
a validity rate of 0.790 and a relatively high standard deviation of 0.407. In terms of the



correction count, zero usage of the FHIR validator for both types of CSV inputs and the
XML free-text inputs can be observed, indicating that the few-shot strategy produces
valid FHIR within the first output for that input format. The correction count for Fitbit
JSON and free-text TXT data shows that the model only calls the FHIR-validator in a
few cases. When comparing the validity rate after the first output with the validity rate
after the whole cycle, it is evident that using the FHIR validator significantly improves
the validity rate and the standard deviation, as the model could correct its output based on
the error message and the correction prompt. For Withings JSON, the correction count
was 1.053 (standard deviation 1.646), which underlines our finding that the few-shot
strategy struggles with that input format. Looking at the semantic accuracy draws a
different picture: for both JSON inputs, our pipeline fails to produce semantically correct
outputs. An explanation for that behaviour can be found in the structure of this input
data: multiple measurements must be aggregated to create a semantic correct production.
For example, the input data contains various values for REM sleep corresponding to the
user’s REM sleep phases during the night. This must be summed up to get the total REM
sleep. The LLM fails to sum them up correctly, resulting in a semantically incorrect
measurement. These results indicate that the JSON structure is too complex for our LLM
as it fails to aggregate the values correctly. Similar results are observed for CSV data,
although the model does not fail for all inputs, especially not for Fitbit data. The values
were already aggregated in our textual inputs, resulting in a nearly optimal performance:
All XML inputs were translated semantically correctly (semantic accuracy of 1.000), and
only a few TXT inputs were processed semantically wrong (semantic accuracy of 0.989
with a standard deviation of 0.101). This underlines our verdict that the low performance
on JSON and CSV inputs can be attributed to wrong aggregation due to the complex
structure of the input data.

Table 1. Results E1

Fitbit JSON Withings JSON  Fitbit CSV  Withings CSV free-text XML free-text TXT ~ Overall

Validity Rate  1.000 (0.000) 0.790 (0.407) 1.000 (0.000) 1.000(0.000) 1.000 (0.000) 1.000 (0.000) 0.994 (0.079)
SAR 0.000 (0.000) 0.000 (0.000) 0.4943 (0.392) 0.024 (0.088) 1.000 (0.000) 0.989 (0.101) 0.631 (0.456)
Correction Count 0.005 (0.073) 1.053 (1.646) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.116 (0.301) 0.050 (0.358)
Validity Rate *  0.995 (0.073) 0.684 (0.467) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.884 (0.321) 0.972 (0.165)

6.2 Results E2

Table 2 presents the results using the reasoning strategy. As for E1, the corresponding
standard deviation is shown in brackets. The reasoning strategy achieved a value of
0.818 under a standard deviation of 0.386 for the overall validity rate averaged over
five runs. This is significantly lower than the results for the few-shot strategy. Further,
the relatively high standard deviation indicates that the model struggles to perform
constantly with the reasoning strategy. When looking deeper into the different input
formats, it can be observed that the reasoning strategy works best with the free-text TXT
inputs, as all outputs were valid FHIR, which aligns with the results for the few-shot
strategy. Using free-text inputs in XML leads to a validity rate of 0.899, indicating that



the reasoning strategy can properly handle free-text inputs. We explain this behaviour
because LLMs are trained primarily on free-text data in natural language and not on
data with a proprietary structure like our sleep observations. Thus, they struggle to
process such inputs correctly with complex proprietary structures. For the JSON inputs
from both Withings and Fitbit, the averaged validity rate is 0.864, respectively 0.910.
Translating CSV inputs into FHIR produces the worst results. A validity rate of 0.596
was achieved for the Fitbit CSV inputs, while the Withings CSV inputs led to a validity
rate of 0.715. Therefore, we conclude that the reasoning strategy struggles with CSV
inputs compared to the other input formats. Regarding the correction count overall inputs,
the value of 1.552 indicates that the first output of the LLM is usually not valid FHIR;
a standard deviation of 1.224 underlines this finding. When comparing the validity
rate after the first output (0.059) with the validity rate after the correction (0.818), it is
evident that our correction mechanism can significantly improve the quality of the output.
This shows that even small size LLMs, which have lower operating costs, could refine
their output based on the error message. In terms of semantic accuracy, the results with
the reasoning strategy follow the direction of the results of the few-shot strategy. Our
pipeline fails to aggregate the measurement from JSON completely. Nearly the same is
true for the CSV inputs, even when some Fitbit measurements were aggregated correctly.
Regarding the textual inputs, this strategy achieved a semantic accuracy of at least 0.585
for the XML input, significantly less than the few-shot strategy (1.000). For the TXT
inputs, the reasoning strategy (semantic accuracy 0.984) is on par with the few-shot
strategy (semantic accuracy 0.989). Overall, we conclude that the reasoning strategy
lacks performance compared to the few-shot strategy. This underlines the hypothesis that
LLMs do not have human-like reasoning skills. Instead, they rely on pattern matching
(Schaeffer et al., 2023; Altmeyer et al., 2024; Mirzadeh et al., 2024; Wu et al., 2024;
Webson and Pavlick, 2022; Lu et al., 2024).

Table 2. Results E2

Fitbit JISON Withings JSON  Fitbit CSV  Withings CSV free-text XML free-text TXT ~ Overall

Validity Rate ~ 0.910 (0.286) 0.864 (0.344) 0.596 (0.491) 0.715 (0.452) 0.899 (0.302) 1.000 (0.000) 0.8180 (0.386)
SAR 0.000 (0.000) 0.000 (0.000) 0.015 (0.120) 0.000 (0.000) 0.585 (0.465) 0.984 (0.125) 0.138 (0.338)
Correction Count 1.347 (0.920) 1.173 (1.217) 2.331 (1.460) 1.848 (1.409) 1.292 (0.903) 1.047 (0.375) 1.552 (1.224)
Validity Rate *  0.008 (0.090) 0.255 (0.175) 0.032 (0.175) 0.053 (0.225) 0.008 (0.091) 0.000 (0.000) 0.059 (0.235)

7 Conclusion and Outlook

The experiments showed that even lightweight LLMs could have significant potential
to translate PGHD in various formats into FHIR, therefore ensuring seamless interop-
erability between wearables heterogeneous HIS at low costs. The flexibility of LLMs
marks a significant advantage over ontologies, as LLMs could adapt PGHD in various
forms without extensive human effort. In terms of syntactical interoperability (second
interoperability level), our data mediator showed a dedicated ability. Both strategies
processed most of the inputs into valid FHIR; generally, the few-shot strategy performed
better than the reasoning strategy. This indicates that clear transformation instructions



combined with examples are more beneficial for the LLM than a guideline of how FHIR
should be created. Further, we showed that the validation mechanism, in combination
with a correction prompt, contributes effectively to the performance of the data mediator,
therefore underlining the self-refinement abilities of LLMs (Du et al., 2024). Regarding
semantic accuracy (third level of interoperability), our data mediator failed to extract
and aggregate measurements from complex input structures in nested JSON or large
CSV, as the inputs were not processed correctly. However, using free-text data, the
results showing a significantly higher semantic accuracy. This is likely because free-text
data is more straightforward to process, as it does not require aggregation. Adding a
preprocessing step that aggregates the measurements before they are fed into the model,
could help to mitigate this issue. However, this would increase the manual effort to apply
the pipeline, as aggregation rules for all possible inputs would be required. Another
solution could be the usage of an LLMs with enhanced reasoning abilities, so that the
LLMs understands which measurements belong together. However, these complexities
seem to be beyond the reasoning capabilities of existing LLMs (Schaeffer et al., 2023;
Altmeyer et al., 2024; Mirzadeh et al., 2024; Wu et al., 2024; Webson and Pavlick, 2022;
Lu et al., 2024).

To return to our initial research question of to what extent LLMs can improve the
integration of heterogeneous health data, our findings indicate that LLMs hold significant
potential in enabling seamless health data standardization. The results on free-text data
demonstrated that LLMs can effectively translate diverse health data into FHIR, making
it more accessible for clinical use and patient self-management. The free-text results
further suggest that LLMs may possess generalized capabilities for ensuring semantic
interoperability beyond the healthcare domain, as LLMs can process inputs based on
their contextual understanding, enabling adaptive data integration. However, challenges
remain in handling structured data formats that require complex aggregation, which
may impact usability for healthcare providers. Enhancing the processing of proprietary
data structures and refining measurement aggregation mechanisms is crucial to fully
unlocking the benefits of LLM-driven health data integration but also for maintaining
data sustainability. Remarkably, our pipeline does not require expert knowledge or
extensive training data, so it could be applied immediately to various HIS, mitigating the
need for highly specialized ontologies.

An important direction for future research is the effective handling of complex data
structures, which may require preprocessing steps such as measure aggregation. We plan
to investigate whether integrating an LLM with function-calling capabilities into our
pipeline can enhance the processing of such data. In particular, the use of deterministic
functions (e.g., a calculator tool or a specialized aggregation tool) could improve the
LLM’s aggregation capabilities without adding additional manual effort and thus support
more accurate processing of complex data. Beyond the mentioned area, we also plan
to investigate whether some form of uncertainty estimation can be integrated into our
pipeline to increase the quality of the output.
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