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Abstract

This study investigates how organizations layer their product architectures by embedding digital
components into physical products. Drawing on a longitudinal case study of PrintCo—a desktop 3D
printer firm—we show that layering a product architecture relies on creating adapter layers that
facilitate connections among physical and digital components. To generate these adapter layers,
PrintCo first parametrized physical components through firmware, making them controllable and
addressable. PrintCo then arranged higher-order digital functionality via adapter layers that couple
parametrized physical components with additional digital functionality. Based on these findings, we
propose a theoretical model that explains how organizations layer product architectures, what the role
of adapter layers is, and how the transformation of an organization’s product architecture progresses.
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1 Introduction

With the advent of digital technology, organizations are
transforming a growing number of industrial-age
physical products—from home appliances (Henfridsson
et al., 2018) and cars (Hylving & Schultze, 2020; Svahn
et al., 2017) to manufacturing technologies (Sandberg et
al., 2020) and buildings (Wang et al., 2022)—into digital
product innovations, that is, new combinations of
physical and digital components (Yoo et al., 2010).
Digital product innovations exhibit a unique product
architecture ! (Yoo et al., 2010) of functionally
abstracted modules (Baldwin & Clark, 2000; Hylving &
Schultze, 2020; Pujadas et al., 2024) arranged in

A product architecture refers to the set of components and
their interactions that constitute a product (Henderson & Clark,
1990).
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separate, loosely coupled vertically stacked layers that
bundle functionally related sets of components that
serve a particular purpose (Yoo et al., 2010).

A layered-modular product architecture has several
benefits: Modularity instills products with variability and
flexibility because organizations can adjust or replace
individual components with more powerful ones without
affecting the product as a whole (Albert & Siggelkow,
2022; Colfer & Baldwin, 2016). Layers separate more
static components with fixed, unchanging functions (like
most physical parts) from more flexible ones (often digital
parts), which allows organizations to continuously adapt
their products (Faulkner & Runde, 2019; Yoo et al., 2010).
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While prior research has investigated how to modularize
a product architecture, much less is known about how
organizations layer product architectures. Existing
research points out that layering product architectures
involves the design and integration of digital
representations—depictions of real-world information,
objects, or phenomena encoded in a digital format that can
be processed, stored, or transmitted by computers—into
product architectures (Lyytinen, 2022). However, doing
so is a complex task that goes beyond merely grafting
digital technology components onto physical products
(Hylving & Schultze, 2020; Lyytinen, 2022). Instead,
organizations must embed digital technology components
within a product architecture (Lyytinen, 2022) such that
these digital components become the primary means for
controlling physical components and the basis for
introducing additional digital functionality leveraging the
physical components. This process poses a substantial
challenge to organizations because even if modular,
physical components are rarely designed to interact with
digital technologies. Therefore, our research objective is
to understand how organizations layer their product
architectures by embedding digital components.

We conducted a longitudinal inductive case study of
PrintCo, a fused deposition modeling (FDM) desktop
3D printer company that layered its printers’ product
architecture to meet evolving user needs in terms of
accuracy, reliability, and the capability to print
increasingly complex objects. When PrintCo initially
launched its 3D printers along with complementary
CAM software as its market offering, these
components were originally decoupled and existed as
separate systems. When PrintCo decided to enhance
the product’s performance to be more attractive to its
users through software functionality, it needed to
embed new layers of digital components within the
printers’ product architecture.

Through our analysis, we uncovered that PrintCo relied
on two techniques to embed new adapter layers within
the architecture of its 3D printers. First, parametrizing
physical components involves the iterative creation of
digital representations of physical components to
capture their attributes and primary functions in digital
form. These make physical components controllable
through digital code. Second, arranging digital
functionality involves establishing digital adapter layers
within a product architecture to couple higher-order
digital  functionality = with  lower-level digital
representations. Together, these two techniques explain
how organizations embed digital technology
components within a product architecture to create a
layered-modular product architecture.

Our study makes two main contributions. First, our
findings extend our knowledge about digital product
architectures (Colfer & Baldwin, 2016; Lee & Berente,
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2012; Svahn et al., 2017). Specifically, we suggest that
organizations layer their product architectures by
separating functional layers that bundle related product
capabilities from adapter layers that organize the
interaction between these capabilities. As we highlight,
the locus of layering thus follows a logical hierarchy of
steps that successively ascend a product architecture.
Second, we provide new insights into the techniques
organizations can take to layer their product
architectures (e.g., Hylving & Schultze, 2020). We
propose that layering a product architecture involves
two key techniques: parametrizing physical components
and arranging digital functionality. Both techniques help
organizations operationalize the goal of layering their
product’s architecture into concrete design decisions
they can implement.

Our paper proceeds as follows. First, we ground our
study in the literature on digital innovation and product
development to establish the concepts of modularity and
layeredness. Then, we describe the procedures of our
field study and present the findings from our inductive
analysis. We then discuss the theoretical insights that
flow from our study before reviewing the implications
and limitations.

2 Background

2.1 Modularity and Layeredness of Digital
Product Innovations

In their seminal work, Yoo et al. (2010) pointed out
that digital product innovations have a distinctive
layered-modular architecture with three key properties.
First, a layered-modular architecture is structured. It
separates layers of digital components (such as
software routines, algorithms, or data) from the
physical layers on which they reside. This makes
digital components product-agnostic (Nambisan et al.,
2017; Yoo et al., 2010): Their design requires minimal
consideration of eventual use or the specific product
architecture they will be part of (Eaton et al., 2015;
Garud et al., 2008). Second, a layered-modular
architecture is malleable (Nambisan et al., 2017; Yoo,
2010): It can be equipped with new computing
instructions to perform fundamentally new functions at
any point in time. Third, due to its malleability and
ability to be addressed by other computing devices, a
layered-modular architecture can support open-ended,
continuous change cases (Huang et al., 2022; Yoo et
al., 2010; Zittrain, 2006) that can be driven by large
and uncoordinated groups of third-party contributors
(Gawer, 2021; Parker & Van Alstyne, 2018).

Instilling product architectures with these properties
requires organizations to layer their product architecture
even when it is already modular (Yoo, 2013). However,
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precisely sow organizations can layer the architecture of
their products remains largely unexplored. Past work has
focused mainly on the implications of a layered-modular
architecture (Baskerville et al., 2020; Henfridsson et al.,
2014; Yoo, 2010), or it has focused on organizational
challenges, such as tensions between different
organizing logics (Svahn et al., 2017), growth
(Giustiziero et al., 2023; Huang et al., 2022), new
organizational forms and value creation (e.g.,
Henfridsson et al., 2018; Lorenz et al., 2024; Parker et
al., 2017), or the design of interfaces as a key vehicle for
addressing and controlling product components (e.g.,
Gawer, 2021; Kuan & West, 2023; Pujadas et al., 2024).
In the pursuit of advancing our understanding of digital
innovations, this work takes the layered-modular
product architecture as given, despite evidence
suggesting that layering a product architecture involves
an intricate set of challenges (Hylving & Schultze,
2020). At the core of these challenges is the requirement
to decompose a product architecture into sets of
hierarchically  structured,  functionally  related
components, i.c., layers.

Building on the work by Simon (1996) and Baldwin
and Clark (2000), innovation management researchers
suggest that products can be understood as a hierarchy
of loosely coupled subsystems—modules—that
interact via standardized interfaces. In theory, the
decomposition of a product into loosely coupled
modules enables changes to individual modules
without affecting other parts of the product. This
decomposition allows organizations to create product
variants flexibly (Huang et al., 2022), such as a scoped-
down, low-cost version, or to “open up” their products
to third parties that enhance the performance of the
product by providing specialized modules (Baldwin,
2023; MacCormack et al., 2006).

Organizations can modularize a product architecture
through an iterative process, referred to by Baldwin and
Clark (2000) as “design rationalization.” This process
mainly involves identifying interdependencies among

interfaces that define “design rules” for how the
components should interact (Baldwin, 2023; Baldwin &
Clark, 2000). Design rules reduce the need for control
and direct coordination as long as engineers adhere to
them (Gawer, 2021; Kuan & West, 2023). In this sense,
modular architectures emerge from the continuous
specialization of components in a product architecture to
form and integrate modules via the definition of design
rules.

While this work is instructive for modularizing product
architectures, it is not directly applicable when
organizations seek to layer product architectures
(Hylving & Schultze, 2020; Lyytinen et al., 2016).
Layering means organizing product components into
vertically stacked and functionally related sets of
components, each representing distinct stratums within
a product and implementing specific sets of
functionalities. Higher layers build upon the capabilities
provided in lower layers.

Thus, layering differs from modularizing a product
architecture in at least three ways (Hylving & Schultze,
2020): First, modularizing means breaking down a
product into subsystems, while layering means
organizing product components into at least two distinct
sets of functionally related components that may be
more or less modular. The components within each layer
collectively (rather than individually) fulfill a dedicated
purpose (e.g., data transmission vs computation) as part
of the overall product. Second, layering is not primarily
concerned with how functions are allocated to individual
modules within a layer but with how the different layers
interact to form a cohesive, integrated product
architecture. Third, a layered architecture is strictly
hierarchical and unidirectional (Hylving & Schultze,
2020): Higher layers build and act upon lower layers, not
vice versa. These distinctions highlight that successful
digital product innovation requires not just a
commitment to modularity but also to layering to ensure
that each component aligns and integrates effectively
within the overall product. Table 1 summarizes the key

components and gradually adding standardized concepts that inform our study.
Table 1. Key Concepts From the Literature That Informs Our Empirical Study

Concept Design intent Main techniques used Main outcome

Modularizing | To achieve functional | Encapsulation and interface design Abstraction of modules that hide
abstraction of (Baldwin, 2023; Brusoni & Prencipe, internal logic and which can be
component 2001). accessed through interfaces.

Layering To organize sets of Embedding sets of functionally related Separation of stable from fluid
semantically distinct digital components within a product product components to allow for
components within architecture, thus establishing separate generative performativity and
stacked layers (Hylving & Schultze, 2020; Tilson et | extension.

al., 2010).
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2.2 Embedding Digital Components into
Product Architectures

Lyytinen (2022) suggests that layering product
architectures requires organizations to embed digital
components within them such that all components can be
connected to an emerging array of digital service layers.
Embedding digital components within product
architectures involves capturing real-world phenomena
(e.g., social interactions, material performances,
commercial transactions) in digital form as well as adding
computing hardware (i.e., microcontrollers, sensors,
actuators) to a product architecture such that other layers
of digital technology can act upon them (Hylving &
Schultze, 2020; Lyytinen, 2022).

Yet organizations seeking to embed digital components
into product architectures face at least two key challenges.
The first challenge concerns how aspects of the real world
can and should be represented in digital form. Digital
product innovations are cultural objects (Alaimo &
Kallinikos, 2022) and always occupy a social position
(Faulkner & Runde, 2019). There is no objectively correct
way to represent real-world phenomena in digital form.
Additionally, digital representations do not exist in a
vacuum; instead, they must connect to and fit within
existing institutional arrangements to be useful (Lehmann
et al., 2022). For instance, a Bluetooth speaker must
adhere to the interface specifications of a transmitting
device to receive and process audio signals. These signals
must be provided in digitally encoded form for the
speaker’s output to be recognizable as music or speech.

The second challenge concerns how organizations can
embed digital technology components within a product
architecture. This challenge exists because physical and
digital components are not the same (Faulkner & Runde,
2019): Digital technology components are collections of
bitstrings that can be rearranged and manipulated to alter
form and function dynamically, while physical components
bind form and function in a stable configuration
(Henfridsson et al., 2014; von Briel et al., 2018). This
implies that rearrangements of product components are
inevitable when organizations try to embed digital
technology components within product architectures. For
example, while digital innovation researchers suggest that
digital product innovations can be reprogrammed with
minimal consideration of underlying physical components
(Yoo et al., 2010), instilling products with this property
means enabling an emerging set of interactions among
product components (Sandberg et al., 2020). This,
however, is difficult because component interactions are
typically fixed and thus hard to change, as per their design
rules (Baldwin & Clark, 2000).

Moreover, although digital components may, in principle,
be product-agnostic (Nambisan et al., 2017; Yoo, 2013),
digital product innovations also contain purpose-built
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physical components beyond their computing machinery.
For example, in contrast to general-purpose von
Neumann architectures, 3D printers are designed for a
specific purpose—printing objects using polymer
filament—and can hardly be made to perform other
functions (Lyytinen, 2022). Together, this suggests that
digital components may not be quite as product-agnostic
as often assumed (Henfridsson et al., 2018): They must
always be coupled with physical components to operate
within a specific physical context to be meaningful and
valuable (Goebeler et al., 2024).

Taken together, layering a product architecture requires
organizations to embed digital technology components
within a product architecture that can (1) trigger the
execution of code, (2) represent physical and social real-
world phenomena in digital form so that they can compute
on them, and (3) contextualize digital computations
within the real-world context in which they are used
(Lyytinen, 2022). Layering product architectures thus
goes above and beyond merely adding a computing
device to a product or developing a software application
that can be connected to a product. However, how
organizations embed digital components into physical
products to layer them remains unclear.

3 Method

We engaged in a form of grounded theorizing (Strauss
& Corbin, 1998; Urquhart et al., 2010) based on a
longitudinal single-case study of an FDM desktop 3D
printer manufacturer (PrintCo). We collected data as
representative facts (Sarker et al., 2018) about how
PrintCo transformed its product to integrate digital and
physical components. Our data analysis strategy was
inductive and involved abstracting from occurrences to
events (Abbott, 1990), temporal bracketing (Langley,
1999), and inductive coding (Strauss & Corbin, 1998).
Because our interest was in understanding the
techniques through which PrintCo transformed the
architecture of their 3D printers, we decided to draw on
the literature on digital product innovation and
technology and innovation management as lenses
(Henderson & Clark, 1990; Yoo et al., 2010).

3.1 Research Setting

PrintCo is a leading firm in the desktop FDM 3D
printing industry. Our analysis of PrintCo builds on data
from six years (2011-2016), during which PrintCo
designed and introduced several increasingly
sophisticated 3D printers. In 2016, PrintCo launched a
new 3D printer product line that integrated numerous
digital components—a stark contrast to the product lines
we studied.

In general terms, the architecture of a desktop FDM 3D
printer consists of several components that work
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together to create three-dimensional objects from digital
models of physical objects by processing polymer
plastic materials. Computer-aided manufacturing
(CAM) software translates digital models into machine
code instructions to produce a physical object from a
digital model. This process involves “slicing” digital
model files into individual layers, resulting in a G-code
file. This G-code file contains machine instructions for
each layer. The G-codes generated by the CAM software
are then transmitted to the 3D printer, which translates
these codes into electronic signals that control the
physical components.

Of all the physical components, the frame is the structural
backbone of a 3D printer, providing stability and support for
all other components. It ensures that the printer remains
rigid and reduces vibrations, which is crucial for
maintaining print quality. The print bed is the surface on
which the 3D-printed object is built. The extruder is
responsible for feeding and melting the filament and then
depositing it layer by layer through the nozzles. Nozzle sizes
can vary, affecting the level of detail and speed of prints.
Stepper motors drive the movement of the printer and
control the extrusion of filament. The typical motors are an
x-axis and y-axis motor moving the print head horizontally,
a z-axis motor moving the print bed vertically, and extruder
motors driving the filament into the hot end. Belts and rods
transfer the motion from the motors to the print head and
bed, ensuring precise movements. Belts are typically used
for x and y movements, while threaded rods or lead screws
are used for the z-axis. Sensors detect the limits of the
printer’s movements in the x, y, and z directions, ensuring
that the print head does not move beyond its intended range.
A control board interprets the G-code (instructions from the
slicing software) and controls the motors, heaters, and
sensors accordingly. The control board also receives

feedback from the sensors to ensure accurate positioning of
the print head and bed. These components must work in
harmony for the 3D printer to function.

We consider PrintCo a revelatory empirical case because
the challenge of how organizations layer a product
architecture was particularly salient. Digital technology,
such as computer-aided design and manufacturing
(CAM) software, has always been crucial in FDM 3D
printing (Rayna & West, 2023; West & Kuk, 2016).
PrintCo’s early market offering consisted of two largely
separate systems, the physical printing device on the one
hand and CAM slicing software on the other. Over time,
PrintCo tried to improve the printer’s reliability and
accuracy to meet users’ evolving needs by embedding
digital technology directly within the printer’s product
architecture. Table 2 summarizes the main product
generations’ technical characteristics that we studied.

3.2 Data Sources

We used five primary data sources (Table 3). We
conducted 30 semi-structured and five informal interviews
with key informants in two waves between 2017 and 2019.
While our questions were initially broad, we refined them
as interviewing progressed. Initially, we asked informants
about which new digital technology components PrintCo
introduced to extend the functionality of its printers. Later,
we asked them why these digital technology components
became more critical to how PrintCo sought to create value
for its users, as well as how PrintCo managed to integrate
digital technology with the other components of the
product’s architecture. In addition, we collected archival
data consisting of around 300 company-internal
documents, five secondary interviews, and around 190
publicly available documents. This data provided detailed
insights into the actions taken by PrintCo to transform its
3D printers.

Table 2. Characteristics of the Different Generations of PrintCo’s Printer

a custom GUI

enhanced performance

process to user needs

Year ?fter 1 3 4 6
founding
Main physical Self-assembly kit Preassembled Improved feeder Dual-extrusion system,
components (plywood) with single assembled, single system, auto-bed leveling,
extruder, design based extruder; enclosed interchangeable swappable print nozzle
on the RepRap project build chamber, heated | nozzles, single system, advanced cooling
bed upgrade extruder system
Main digital Decoupled and generic Revised, proprietary Enhanced with ways Continuous improvements,
components slicing tool wrapped in slicing engine for of adapting print implemented GUI APIs for

integrating functional
extensions

Main firmware

Generic open-source
firmware with basic
parameters for
controlling printer
components

First custom firmware
implementing broad
range of custom
machine codes

Firmware
enhancements for
improving print speed
and accuracy

Advanced firmware with
dual-extrusion support and
remote control, including
generation of print reports

Interfaces

USB

USB, SD card

USB, SD card

Wi-Fi, Ethernet, USB, APIs

1634




Layering the Architecture of Digital Product Innovations

Table 3. Data Sources

Data sources N Description Temporal coverage
Semi-structured 30 Interviews with key employees involved in research and 2012-2016
interviews development, product management, strategy, and portfolio

management of 3D printers. Interviews include initial and follow-up
Informal interviews| 5 interviews
Secondary 5 Interviews with PrintCo’s top management in the popular press and | 2012-2016
interviews industry publications

Public documents | ~190

Systematic collection of documents from sources including company | 2012-2016
blog entries, forum posts, press releases, product change logs and
release notes, and technical documentation

Company ~300
documents

milestones

Documents informing about product strategy, specifications of new
machines concerning both digital and physical components,
development process, project management, deliverables, and

2014-2016

3.3 Analysis Strategy

Our data analysis followed a process approach (Berends &
Deken, 2021; Langley, 1999) to trace the unfolding of key
events in PrintCo’s journey of improving their 3D printer.

We first compiled a detailed event list of how the 3D
printers’ overall product architecture changed, based on
archival data and company documents (release notes, blog
posts, product documentation, forum  posts,
presentations). We focused broadly on changes that were
made to physical and digital components and the
relationship between the components featured in the
different product generations. We defined as salient
events (Abbott, 1990) all those actions PrintCo undertook
that related to designing, revising, changing, and updating
digital and/or physical components. Examples included
the implementation of new machine code instructions for
obtaining data from a new sensor and the design of
algorithms for using one print nozzle to generate support
structures. By contrast, events such as the appointment of
a new C-level executive or the creation of a new
department did not qualify as events salient to our study
and were thus excluded from our analysis. Each event was
marked with a timestamp and accompanied by detailed
information about the event to maintain a chain of
evidence. We identified 156 such events in total.

Next, we analyzed our data to glean insights into the
sequential and logical unfolding of these events,
considering the objectives pursued by PrintCo at that
time. For example, from company-internal documents,
we learned that PrintCo’s key ambition initially was to
make its 3D printer increasingly attractive to users by
integrating digital and physical components. We noticed
that to realize this vision, PrintCo had to integrate digital
technology with physical components such that it became
possible to digitally resolve the physical shortcomings of
its printers (e.g., warping of printed objects) or to increase

the versatility of the 3D printers (e.g., printing layers with
varying widths). Through temporal bracketing (Langley,
1999), we then clustered salient events into nine logically,
thematically, and temporally related episodes (Table 4).
Each episode had a distinct objective, such as making
printers more reliable and accurate or extending the ability
to print more complex objects.

We then treated the episodes as embedded units of
analysis and thematically coded interviews and
company documents to identify the key activities within
and across the episodes that explained how PrintCo
embedded digital technology components into its
product’s architecture. In doing so, we noticed recurring
patterns across episodes. Specifically, we learned that
PrintCo started implementing additional digital layers
whose primary purpose was to couple functional digital
and physical components. We labeled these layers
“adapter layers” because they helped two separate layers
to communicate with one another and thus established
sets of components as layers. Overall, we synthesized
two distinct techniques by which PrintCo created these
adapter layers—parametrizing physical components and
arranging digital functionality.

Finally, having identified these techniques, we
examined their temporal and logical relationships. We
found that PrintCo began by parametrizing physical
components and only afterwards moved to arranging
digital functionality. That is, the organization initially
set up a digital adapter layer (firmware) embedded
within their physical components before integrating
higher-order digital components with other digital
elements through additional adapter layers. Figure 1
presents our data structure as an analytical ladder (Gioia
et al., 2013; Urquhart et al., 2010), progressing from
first-order codes (e.g., introducing parameters) to
second-order  themes (e.g., designing digital
representations) and aggregate dimensions.
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Table 4. Main Product Development Episodes

# | Start End Episode Description Main Key events
name objective
1| Q2/2011 | Q2/2012 | Control Augmentation of Provideanew | 1. Introduce an LCD control panel for controlling the printer,
panel printer architecture | user interface along with an SD card interface.
digital display to for coptrolling 2. Design codes for reading from and writing to SD cards.
control printer the printer 3. Leverage the control panel to give users access to machine
functions without | during a print settings during the printing process.
software job 4. Release firmware update for operating the control panel.
2 | Q4/2012 | Q3/2014 | Heated Redesign of print Resolve issues | 1. Redesign print bed component to incorporate heating unit.
bed bed to be heated related to the 2. Revise print bed representation to include a parameter for
wqrping of temperature.
objects 3. Make parameters available in slicing software to set the print
bed temperature.
3| Q3/2013 | Q4/2016 | Dual Redesign of print Provide the 1. Develop a prototypical dual-extrusion upgrade kit initially so
extrusion | head introducinga | option to print that users can upgrade their existing printers.
second nozzle intwo 2. Implement new machine codes for dual-extrusion
materials or functionality, such as wiping nozzles or cooling down an
colors inactive nozzle.
3. Revise the design of the dual-extrusion print head, heating,
and nozzles to address shortcomings of the first kit.
4. Revise firmware and slicing software with advanced
functions and support for dual-extrusion printing.
41 Q1/2014 | Q4/2016 | Active bed | Redesign of the Increase the 1. Design a new capacitive sensor that can be used to measure
levelling | print bed allowing | reliability of the distance between the nozzle and print bed.
for automated the printer 2. Implement machine codes for reading sensor data,
height adjustment accounting for noise during measurement and failed
measures.
3. Implement machine codes for automatically adjusting the
vertical position of the print bed.
4. Revise slicing software to incorporate print bed calibration
before printing to improve print outcomes.
51Q2/2012 | Q1/2013 | Stand- Design of software | Establish 1. Design a new feature in slicing software to generate and
alone routines to establish | professional export G-code files that rely on the ability to print from an
printing the printer as a workflow SD card.
standalone device 2. Decommission feature to send machine instructions to printer
without requiring a directly via cable in the slicing software.
connection to a PC
6 | Q3/2014 | Q3/2016 | First-layer | Design software Increase the 1. Optimize slicing settings using the heated bed functionality
adhesion | routines to improve | success rate of and sensor information about the distance between the print
the adhesion of the | print jobs that bed and print head.
first printed layer to | would 2. Design new functionality for generating skirt and brim
the print bed otherwise fail structures to be printed around the actual model to increase
due tq poor adhesion due to a larger footprint.
adhesion of the | 3 Optimize the design of these structures depending on model
first layer and material properties.
7 |1 Q3/2015 | Q4/2016 | Tilt Design of new Improve the 1. Implement the ability to measure the distance between the
correction | firmware routines | accuracy of print bed and print head to determine the tilt of the print bed.
that account for printed objects | 2. Adjust slicing software to account for any tilt.
tilted print beds
8 1 Q3/2016 | Q1/2017 | Complex | Design of new Extend the 1. Leverage dual-extrusion print head by introducing the ability
objects software routines range of use to select a specific nozzle in slicing software.
that improve cases of its 3D | 2. Design a new feature for decomposing a model into separate
PI_inti_Ilg f)f objects | printers parts, each to be printed with one model.
Wlth. Intricate 3. Design a new algorithm for generating support structures that
details and enable printing particularly complex or difficult-to-print
overhang objects.
4. Explore the integration of support materials that can be
removed or resolved in water.
9 | Q1/2016 | Q1/2017 | Materials | Improve print Support a 1. Explore ways to adapt print settings.
outcomes with larger array of | 2. Devise settings to optimize print process for intended use.
materials use cases
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Second-order themes Aggregate Dimensions

- Introduce novel parameters for describing for setting bed temperature
(heated bed episode)

- Introduce parameters to describe a print head with two nozzles (dual
extrusion)

- Introduce interpreter for machine code on SD cards

- Implement machine codes for measuring sensor output (active bed
leveling)

- Implement machine codes for retracting filament for inactive nozzle
(dual extrusion)

- Implement machine code for varying layer width

Design digital
representations
Parameterizing
physical
components

Implement machine

code

printing)
- Design slicing routine for decomposing CAD files into two separate
objects (dual extrusion)

- Design slicing routine for generating exportable g-code files (standalone

Design functional

- Design routine for printing with soft or hard materials (new materials)

stubs

\ Arranging digital

- Introduce feature for generating support structures (printing more
complex objects)

adhesion)

functionality

- Introduce new feature for printing brim and skirt structures (first layer

Render interfaces

Figure 1. Data Structure

4 Findings

4.1 Overview: How PrintCo Layered Its
Product Architecture

PrintCo was founded in the early 2010s with the vision of
designing 3D printers for and with a community of
makers and tinkerers. PrintCo introduced its first 3D
printer as a self-assembly DIY kit. Shortly after the
release of the first printer, PrintCo assumed stewardship
of an open-source slicing software as a means for
operating its printers and to make 3D printing accessible
to a broader audience, which led to faster adoption among
makers and tinkerers. Over time, users became interested
in printing increasingly complex and sophisticated
objects, with several using their printers for more
advanced applications. In noticing this trend, PrintCo
worked on performance improvements to meet these
evolving user needs by integrating digital and physical
components. As a software architect summarized:

We’re not doing any of the steps necessarily
better than any of the others, but we are
doing all of the steps. And I've seen a lot of
3D printers that either had an amazing bit of
hardware, but the software was unusable,
slow, nobody understood it. Or the other way
around.: you have a very crappy machine and
then the software was very easy to use. And
1 think that's why we are pretty successful,
you know, we had sort of the magical

combination of a pretty decent machine with
pretty decent software.

This focus impacted the relationship between the digital
slicing software and the printer. Initially, the slicing
software and printer were decoupled, largely independent,
and existed as separate systems. The slicing software was
internally viewed as a “side project” that was built off a
generic G-code interpreter with minimal customization.
To better meet user needs, software became a key driver
for improving printer accuracy and reliability and
enhancing usability across an expanding range of
applications.

To achieve this goal, PrintCo aimed to integrate the
slicing software into the printer’s product architecture to
enable new features and improvements. For instance,
PrintCo continually improved its slicing software to offer
a larger number of increasingly powerful functionalities
that would make 3D printing more attuned to user
requirements in accuracy and consistency, they made the
slicing algorithm more robust and accurate, and they
designed new algorithms for printing increasingly
complex objects (e.g., with lots of overhang). However,
this process was far from trivial. As PrintCo sought to
introduce additional functionality via software, they first
needed to find a robust way to controll physical
components via digital code. At the same time, PrintCo
also needed to ensure that primary functions offered by
the components of the product architecture could be
implemented by the slicing software.
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Stylized Hierarchical, not embedded: Software and Modular and coupled: software is Modular and layered: User interface
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archi tweaking and hacking Design of heated print bed Revision of mainboard electronics
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swapping nozzles and filament hackable anymore
feeding .
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Firmware Reliance on generic open-source Implementation of numerous new G-codes Design of new firmware routines
components of | firmware and M-codes for operating specific printer for new components, such as
architecture components callgfatlniprlnt befi pos;non,;nd
Design of new, proprietary, PrintCo-specific Release of new firmware version for new printer, which caters ~ ©nabling the reception of machine
firmware, with core functionality: SD card and LCD to its specific new components, such as specific filament instructions via Wi-Fi.
S ; iti ’ > retraction routines, no-go zones due to new geometry of print .
support, parameter deﬁ?mon (temperature, fan utines, ? © ! i Release of firmware updates that
speed), arc movement, interrupts for temperature bed, and revision of machine code implementations to optimize 8 . E
. > for n rinter focus on improving print speed
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Release of several firmware updates to fix y
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Figure 2. Overview of the Architectural Changes in PrintCo’s 3D Printer Over Time

Figure 2 summarizes the evolution of the architecture of
PrintCo’s 3D printer over time, offering a stylized
description at three different stages and differentiating
changes between hardware, firmware, and software
components (with indented entries representing
temporally subsequent steps). Through our analysis, we
uncovered two techniques through which PrintCo layered
its product architecture. First, PrintCo sought to enable
control of physical components through digital code. We
label this technique parametrizing physical components
to describe how PrintCo represented physical components
in digital form within a firmware layer such that these
components’ primary functions (such as rotating the print
head or heating the print bed) could be addressed by yet-
to-be digital layers. Second, PrintCo also layered its
product architecture by arranging digital functionality
within adapter layers that became part of the product
architecture. These adapter layers allowed PrintCo to
couple multiple functional digital components across
layers and enable connections to further digital
components. Through these two techniques, PrintCo
embedded adapter layers within its printers’ architecture.
These layers facilitated interactions among functional
components and organized the architecture into digital
and physical layers.
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4.2 Parametrizing Physical Components

The first technique through which PrintCo layered its
product architecture was parametrizing physical
components. Through this technique, PrintCo made the
primary functions of physical components addressable
through digital code. Parametrizing physical components
advanced an emergent firmware layer—sitting atop and
abstracting from the underlying physical components—
within the product architecture. Firmware traditionally
consists of a fixed set of instructions and routines for
operating physical components. However, our analysis
revealed that firmware played a crucial role as a dynamic
adapter layer to make the physical components’ primary
functions digitally accessible such that they could be
loosely coupled with and flexibly operated by yet-to-be-
developed software layers higher in the architecture.
These software layers turned out to be key for equipping
the printer with additional functionality.

Beginning with physical components, the parametrization
of components involves two crucial activities. First, to
ensure physical components can be controlled via digital
code, PrintCo created digital representations of physical
components in the form of parameters, variable ranges,
and standard settings that comprehensively described
these components. These digital representations modeled



the behavior and state of underlying physical components,
and captured key values associated with the various states
the components could be in to ensure that the firmware
could interact with the hardware and adapt its behavior in
a structured and efficient manner. The purpose of the
digital representations was to convey the relevant static
attributes of physical components, such as the axes along
which a mechanical element could move or the color
palette a screen could display. They defined the state
space of physical components within an emerging adapter
layer of the printer (i.e., firmware). Thus, creating these
representations required PrintCo to determine which
parameters were crucial for effective control, and defining
these representations was essential for transitioning from
an arrangement where component roles and interactions
were fixed to a more adaptable arrangement.

Second, PrintCo implemented primary functions that a
physical component could perform (e.g., moving and
turning a print head along certain axes, or extruding
filament through a feeder in a particular mass and pressure)
in the form of machine code instructions, so-called G-codes
and M-codes.? Essentially, machine codes define when and
for how long electricity should flow through which pins on
the printer’s microcontroller to have a component perform
a certain function and thereby transition from one
component state to another. Machine codes were
implemented in C++ code and compiled to run on the
printer’s microcontroller. By implementing machine codes,
PrintCo added dynamic elements to an emerging firmware
layer to control the printer components. Thus,
parameterizing physical components advanced a digital
adapter layer within the product architecture that provided
the means for the firmware to control the behavior of
printer components. PrintCo iterated between the
parametrization of physical components and the
implementation of machine codes to enable the subsequent
introduction of new digital functionality.

PrintCo’s implementation of a heated print bed provides an
apt illustration for parametrizing components through
digital representations and machine code instructions. A
known issue that stood in the way of enabling a larger set
of use cases was shortcomings in print quality, such as
warping (printed objects shrank and became asymmetrical
when they cooled down too quickly). Warping could lead
to suboptimal or even failed print outcomes. It was, in fact,
a common practice among users to redesign objects with a
wider base to minimize warping.

PrintCo addressed this issue by redesigning the print
bed—a physical component—so it could be heated.
PrintCo based the design of a heated bed on the existing
design, exploring ways to integrate a heating element that
could be powered by the printer’s existing power supply

2 G and M codes are alphanumeric instructions used in
manufacturing to control and automate machine movements
and operations.
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unit yet was powerful enough to reduce the temperature
difference between filament extruded from the print head
and the print bed enough to prevent warping. PrintCo
conceived of the heated bed as an improved substitute for
the existing print bed to address problems with warping
objects and failed prints.

The heated print bed promised to resolve issues due to
warping and improve print quality. But this required the
print bed temperature to be adjustable to fit varying
requirements and to be controlled digitally. PrintCo
therefore implemented in the firmware a digital
representation of the component’s parameters and
possible states that described the key properties of the
heated print bed as well as the code to initialize the heated
bed when turning on the printer. These actions added to
the static elements of the emergent firmware layer, which
ensured the component’s new features could be
implemented in the actual printing process. Subsequently,
PrintCo implemented machine codes in its firmware to
introduce the ability to heat the print bed to certain
temperatures by obtaining and setting the printer
dynamically from a future, higher layer of application
software. As summarized in an R&D document:

To develop the heated bed, the following has
been done: The prototype has been designed,
cables have been designed and tested, a heated
bed has been designed and tested, the
firmware was adjusted so that the new product
can be chosen and a good experience will
materialize.

These efforts ensured that the heated print bed could be
embedded within the printer’s product architecture to
enhance print quality.

The dual-extrusion print head provides a second
illustration for parametrizing components. Dual extrusion
refers to the ability to print with two different material
types, colors, and/or widths simultaneously. Shortly after
introducing its first-generation 3D printer, users became
interested in printing more complex objects—objects with
intricate geometrical details. For instance, printing objects
with overhang carried the risk of an object collapsing.
Since such objects were inherently challenging to print
with single-extrusion FDM 3D printers, PrintCo therefore
initiated the design of a dual-extrusion print head to
replace the existing single-extrusion print head.

PrintCo implemented the dual-extrusion functionality
through a multistep process that began with the design of
a prototypical print head, which PrintCo released as an
experimental upgrade kit to users. Through this step,
PrintCo learned that, although the new print head was
designed to replace the existing one, the dual-extrusion

1639



Journal of the Association for Information Systems

print head changed how the printer had to execute print
operations for dual extrusion to work effectively. As an
engineer told us:

If you have two nozzles at the same height and
you deposit material, the material swells up a
little bit after the nozzle has deposited it. But if
you have two nozzles, you can rock over the
layers that you previously put down, as well as
the second nozzle that is idling may be leaking
material onto the model. The initial thermal
design for the print head was insufficient for
dual extrusion.

These insights highlighted the need for further
modifications to optimize dual extrusion and prevent
unintended material deposition.

In response, PrintCo’s engineers revised the digital
representation of the print head through additional
parameters within the firmware layer. This representation
described the print head’s various attributes and possible
states, such as which nozzle was active and extrusion
temperatures for each extruder, thus adding to the
firmware’s static elements. Subsequently, PrintCo
implemented machine codes that could operate and
control nozzle lifting and filament extrusion from two
nozzles. One specific challenge in parametrizing this
component was to ensure that the inactive nozzle did not
ooze. PrintCo did so through the implementation of a
sophisticated cooling mechanism in its firmware to
solidify the material in an inactive nozzle, thus ensuring
that material did not ooze from the print head:

We never developed something that really shut
off the second nozzle from leaking. That was
solved in software alone by determining, at a
certain temperature, that the material inside the
nozzle was solidifying so much that it would not
leak out anymore. The software team designed
a strategy that once you 've reached the end of a
move and the end of the use of the second
nozzle, you turn off the power, so the material
will not leak as much. ... That’s something, you
can try and solve in hardware, but it’s super
hard, in case you need to really find a solution
to close off a very tiny hole of 0.4 millimeters
and make sure it’s repeatable and clean and
every time, and in software, it’s by
implementing that strategy, it’s a lot easier to
solve. (Engineer and manager)

This software-based solution not only addressed the
oozing issue effectively but also demonstrated the
advantages of leveraging firmware to control hardware.

While PrintCo was eager to support dual extrusion and
had developed early versions of functions for operating
a dual-extrusion print head, the initial design of the dual-
extrusion print head evoked new interdependencies due
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to different geometrical properties compared to a single-
extrusion print head. Simply introducing the new
component did not only not yield the desired outcomes;
it deteriorated the performance of its printers. A
firmware engineer reflected on this design:

You have one print head and you have two
nozzles, and the nozzles, if you manufacture
them, are always slightly different, and you
need to adjust it manually. I could print very
well, but I was very skilled in doing it. For
people who are not skilled, it would be very
difficult. It was a risk, and the second one is
if you print at the same height, even if it’s
totally well calibrated, if you print with one,
the other one will cross it during the move
because it’s the same height.

These challenges underscored the need for further
refinements in both hardware design and firmware
control to ensure reliable and user-friendly dual-
extrusion printing.

The difficulties led PrintCo to redesign the dual-
extrusion print head. Specifically, PrintCo revised both
the electronics and mechanical design of the dual-
extrusion print head. The outcome of this effort was a
new print head design with liftable nozzles. This design
resolved a key flaw of the experimental design, namely
that the inactive nozzle bumped into the filament
extruded by the other nozzle.

A final example for parametrizing components is a
feature called active bed leveling. As PrintCo looked to
meet user needs, they noticed that next to the
temperature differences between the print head and the
print bed, another key source of inaccurate prints was the
poor calibration of the print bed. If the distance between
the print bed and print head was too large or too small,
the first layers of filament might not stick, which would
lead to a problem colloquially referred to as spaghetti
printing. The traditional way of calibrating the print bed
was with calibration cards: Pieces of plastic in credit
card format that were used to calibrate the distance
between the print bed and print head as users manually
adjusted the vertical position of the print bed. Manual
calibration was a source of variation that negatively
affected print outcomes.

In response, PrintCo explored ways to improve the
current print bed calibration mechanism and designed an
active bed leveling mechanism. This process began with
the design of a novel capacitive sensor that was attached
to the print head to measure the distance between the
print head and the print bed. Doing so meant that PrintCo
had to implement code for reading data from the new
sensor, and this could be quite challenging, given a
multitude of factors that could introduce noise into the
measurement. A firmware engineer described these
factors as follows:



Measurement [with this sensor] can be very
accurate, but it depends on several conditions
to work well. Blobs of material on the nozzle
can affect the accuracy, while the nozzle is
heated during measurements to minimize the
impact of small amounts of filament, larger
amounts will still interfere. Vibrations, such as
those caused by placing the printer on a
washing machine, can add significant noise to
the sensor readings, so it’s best not to use
active  leveling in  such  conditions.
Additionally, ensure the fan cover is properly
closed, as the sensor is attached to the fan
bracket, and an improperly closed fan cover
can cause problems. The sensor is also very
sensitive to hands, so avoid holding your
hands in the machine or touching the top of the
print head, especially the screws, during the
leveling process to prevent disruptions.

These considerations highlighted the complexity of
implementing active bed leveling and the necessity of
refining the firmware to ensure reliable and accurate
calibration under varying conditions.

Following this realization, PrintCo implemented several
new machine codes to read data from the sensor for active
bed leveling to determine the distance between the print
bed and print head and adjust the vertical position of the
print bed in response to that. Yet implementing these
machine codes proved challenging, as the design of the
firmware did not immediately parametrize the new
component in the way PrintCo had anticipated. As a
software architect told us:

The bed leveling part is interesting because
there have been issues there for over a year,
and people were really unsure of what the
issues were because Mechanics thought,
“Okay, we followed the concept very nicely.”
Electronics thought, “Okay, well, our sensor
has these requirements.” And sofiware
thought, “Well, our code, we 've checked over
it a hundred times. It should be fine.” But still,
there were many issues.

These persistent challenges underscored the intricate
dependencies between mechanical, electronic, and
software  components that necessitated further
refinements of active bed leveling.

These issues led the firmware engineers to explore why
these problems emerged and how they might be
addressed—that is, what an optimal way of parametrizing
the new sensor might be. A firmware engineer described
this situation as follows:

Our new printer was about to be launched, so it
was very critical, and they asked me to work on
[the leveling]. And instead of looking at the
codes, trying to fix any issue there, I started to
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Just gather from all of the printers here, all the
data from the sensors, and then I started to see,
well, actually, the sensor, the way it’s working,
it’s not as good as we were imagining. So, we
really sat next to the printers to see it go wrong
while being there. And then we saw, okay,
actually the entire process, how it was thought
of, you need to move your nozzle down, you take
a measurement, was prone to errors. If there
was residue [material in the nozzle], then
everything goes wrong. So, the process itself
was wrong. Some parameters needed to be
different, we needed to heat up in a certain way.

PrintCo subsequently adjusted the firmware to account for
sensor noise and detect when measurements were faulty
and required a sensor restart.

Taken together, parametrizing components was critical
for layering the architecture of the printers. Introducing
new functionality through digital technology meant that
physical components first had to be parametrized to be
addressable by digital code through a new adapter
layer—firmware. Doing so enabled interactions between
physical hardware and digital technology. By crafting
both digital representations and machine code
instructions, PrintCo advanced a digital firmware layer
not as an immutable piece of software for controlling
components but as an abstraction from the specific
components constituting the product architecture and its
primary functions so that they could be adapted to serve
existing and emerging use cases. Ultimately, this
allowed other layers to address the representations or
machine code instructions to capture or operate both the
static and dynamic aspects of physical components.

4.3 Arranging Digital Functionality

While the first technique made the printer’s components
addressable and controllable by digital code, our analysis
also revealed a second technique that was crucial for
layering the product architecture of PrintCo’s printers:
Arranging digital functionality, which coupled digital
technology with an existing as well as emerging set of
further digital components. This was necessary to
establish information flows between newly created digital
representations and machine code instructions pertaining
to printer components and digital service layers higher in
the architecture. Unlike parametrizing components,
arranging  digital  functionality — coupled  digital
components across functional layers to introduce further
digital functionality.

Two distinct activities made up this technique at PrintCo.
The first activity was the design of functional stubs, that
is, providing specific patterns of possible interactions
among multiple parameterized physical components to
solve certain problems for users. Through the design of
functional stubs, PrintCo created a new adapter layer
within its product architecture, which we labeled the
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configuration layer. The configuration layer sat atop the
firmware layer and enabled further digital product
innovation: Rather than leaving it to users to find out how
to configure the printer and perform desired tasks,
functional stubs helped calibrate the print process directly
(e.g., by manipulating printer parameters through a GUI).
The configuration layer consisted of configuration files—
collections of printer-specific settings—that specified
how a digital object should be sliced to adapt the printing
process. By so doing, the same object could be printed in
numerous different ways by adjusting printer parameters.
Thus, the configuration layer connected the slicing
software with the underlying firmware layer to access
now parametrized physical components. The
configuration layer was essential because parametrizing
components alone was not enough to create value for
users. As a product manager succinctly captured:

Sometimes what you see is people saying [a
component] can do 10 things better ... but that
does not solve the problem for the customer. It
must bring value to the customer, and that’s
often not only a technical solution. That is
what comes out of it, but it is not what you
solve. It took a lot of time to understand what
kinds of problems we were solving. Then, to
make this happen, we need certain technology.

This realization emphasized that digital innovation was
not just about expanding technical capabilities but about
ensuring those capabilities translated into meaningful
value for users.

The second activity involved in this technique was
rendering interfaces. Rendering interfaces added an
additional adapter layer to open the slicing tool (a higher-
order service layer) to existing and future digital
components in the form of functional software extensions
or other digital services that could help to further enhance
printer functionality. PrintCo believed that allowing users
to customize their software would help address their local
printing needs. As explained by a software architect:

We had the idea, you know, that it would be
pretty cool if other people were able to make
extensions that would come with [our slicing
tool] or that they would be able to customize
the tool to their needs themselves.

This shift highlighted PrintCo’s growing recognition that
software extensions could significantly enhance the
printer’s adaptability and long-term value for users, and
the goal was to enable extensions to draw on functional
stubs. Together, the design of functional stubs and
rendering interfaces ensured that various sets of digital
components could interact with one another.

An example of the design of functional stubs is the
introduction of several so-called “print modes,”
configurations that adapted the slicing process to account
for technical bottlenecks of the printer, properties of the
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object users tried to print (e.g., geometrical properties),
and designers’ intents. These aspects could affect the
performance of the printers if not accounted for. For
instance, it was a known issue that some printers could
have a slightly tilted print bed due to normal variation
during the manufacturing process and that this tilt affected
the dimensional accuracy of a print under certain
conditions, as a firmware engineer mentioned:

[If the print bed] is skewed or bent—it’s not
exactly straight—then the layers aren’t going
to adhere and the printer’s going to fail.

This example illustrates how print modes were intended
to address hardware limitations to ensure consistent
print performance.

Similarly, objects with intricate details and complex
geometrical shapes (e.g., overhang) were inherently
challenging to print. Moreover, users, at times, have
different objectives when printing, such as producing
objects quickly or optimizing the visual quality of printed
objects. Together, these factors constituted a large
combinatorial space of possible configurations.

To ensure best possible print outcomes across the many
configurations, PrintCo bundled settings into predefined
configurations, print modes, that could be used to adapt
and tune the slicing process. Initially, PrintCo introduced
two different print modes, one that emphasized print
speed and one that emphasized visual quality. When
optimized for print speed, the printer operated with a
higher filament extrusion rate and travel speed.
Conversely, the visual quality print mode placed an
emphasis on the outer layer and required a lower travel
speed. Later, PrintCo expanded this adapter layer by
introducing additional settings, such as infill patterns to
improve part strength and new support structures for dual-
extrusion printing. These print modes defined the various
ways in which different printer components interacted
with print objects, depending on user preferences. These
patterns of interaction were the functional stubs that
PrintCo made available in the slicing software through
print modes to better meet user needs.

An example of rendering interfaces is how PrintCo enabled
users to provide functional extensions—small plug-ins—to
its slicing software by allowing them to interface with
slicing tool functions. Many of PrintCo’s users had a deep
understanding of the printers’ product architecture and
often tweaked their printers to specific use cases. To better
meet these users’ unique requirements, PrintCo sought to
provide them with additional options by making the
implementation of functional extensions more attainable to
this group of users.

To do so, PrintCo overhauled the architecture of the
slicing tool with the aim of increasing the modularity of
its components. While the slicing software had initially
not been developed with that goal in mind, the overhaul
ensured that individual components could be



implemented and added to without affecting the slicing
tool’s overall architecture. Specifically, PrintCo adopted
an application development framework for building
modular and extensible user interfaces, which made it
easier for users to tailor the slicing tool to their needs
through functional extensions. A senior software engineer
described this situation as follows:

We made the software extremely plug-in-able,
so pretty much anything in our slicing software
is now a plug-in to make it tameable, all those
kinds of things. All those things we designed
with the idea that it would be easier for others
to contribute. (Senior software engineer)

The framework provided access to slicing tool functions
as discrete components that could be independently
modified or replaced. This modular design enabled users
to add custom panels, modify settings dialogs, or integrate
new features without altering the core code. This
framework provided an interface layer to the software.
Thus, users could add functional extensions to the printer
architecture. For instance, a user developed a functional
extension for generating custom support structures for
dual-extrusion printing. Another example is a functional
extension for unit conversion, from metric to imperial for
international users. In all, this technique yielded adapter
layers that helped couple layers of digital components
with one another.

4.4 Interactions Among the Techniques

The two techniques—parametrizing physical components
and arranging digital functionality—explain how PrintCo
layered the product architecture of its 3D printers, which
initially consisted of largely decoupled digital and physical
elements, by embedding digital technology components
within it. At the core of these techniques were adapter
layers that loosely coupled digital components (in
particular, the slicing software) with the product
architecture and created further opportunities for digital
functionality to be introduced. Importantly, both techniques
were logically and temporally connected. Before PrintCo
could enable extensions to its slicing software, it needed to
parametrize physical components such that they became
digitally controllable, configurable, and adaptable. This
means that layering began “at the bottom” of the product
architecture, with the process of parametrizing the core
physical machine components of the printer, which PrintCo
first digitally parametrized to then create functional stubs
on top of parametrization that bundled core physical
operations (such as turn and move operations) into abstract
printing routines (e.g., print a circle).

3 In the organizational literature, bottom-up process are
usually understood as unplanned patterns of action in the day-
to-day practices of employees that shape strategic objectives
and action (Mintzberg & Waters, 1985); in this paper, we
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Finalizing the design of its functional stubs allowed
PrintCo to logically “move up” the product architecture to
create an adapter layer that connected the slicing software
and printer hardware. Only then was PrintCo in a position
to render interfaces that would open the slicing software’s
GUI to functional extensions. In this sense, arranging
digital functionality enhanced the layering of the product
architecture by iteratively adding three additional layers
to the product architecture from the bottom up, two below
and one atop the slicing software. These new adapter
layers loosely coupled parametrized hardware with the
slicing software through dedicated firmware and
configuration layers: one (firmware) resided in the
physical component layer of the product, while the other
resided within a digital layer only. Adding a new interface
layer on top of the slicing software that constituted the
layer of main digital services, in turn, opened up the
product for additional functionality that could now be
loosely coupled with the slicing software and the
functional stubs created to operate the parametrized
physical components in the printer.

5 Discussion

Our study identifies two techniques that organizations use
to embed digital components within a product
architecture. Figure 3 represents our findings
conceptually, in the spirit of Lyytinen’s (2022)
visualization. The model in Figure 3 suggests that
layering a digital product architecture is an iterative
bottom-up process® through which organizations couple
digital and physical components through the design of
adapter layers. Adapter layers establish sets of digital and
physical components as functional layers within the
architecture. Recall how PrintCo initially developed its
slicing software and printers independently but then
realized the potential to improve the performance of its
printers by adapting the slicing software. To do so,
PrintCo parametrized its printers’ physical components to
be able to loosely couple the slicing software with the
printer. PrintCo accomplished this progress by
implementing dedicated layers that help with the coupling
and flexible operation of (already existing or newly
introduced) layers of functional components.

The model in Figure 3 also suggests that the scope of
layering expands vertically over time. Initially, layering
occurs at the lower end of the product—at the level of
physical components that must be parametrized to
become accessible to digital components. PrintCo created
a firmware layer to represent and control its physical
components in digital form. Later, layering logically
“moves upward” from the physical component layers to
eventually cover the entire architecture. PrintCo, for

simply mean activities in the design or change of a product
architecture that are at the lower, physical end of products that
involve higher-order functionality on different layers of the
architecture.
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example, leveraged the parametrized physical
components in the design of additional digital
functionality “on top” of the product. At the higher layers
of the product architecture, adapter layers are created to
arrange functionality (i.e., component interactions) such
that additional software layers can be added to create
value for users. Adapter layers are key because they can
be used to dynamically couple various types of digital
components (e.g., firmware, application software,
complementary apps) with each other. Thus,
organizations create adapter layers within product
architectures to arrange the functionality of their different
components into distinct and vertically stacked layers.
These findings have several theoretical implications,
which we discuss in turn.

5.1 Separating Functional and Adapter
Layers in Layered-Modular
Architectures

Our findings contribute to our understanding of layered-
modular architectures, often regarded as the key
organizing principle of digital innovation (Hylving &
Schultze, 2020; Yoo et al., 2010). Specifically, we
unpacked the techniques through which layers are
implemented. For some digital product innovations,

physical components primarily come in the form of
general-purpose computing hardware that can readily be
embedded with digital technology components for
creating additional value. In this setting, the hardware is
primarily a rigid vessel (cf. Goebeler et al., 2024) waiting
to be enhanced with digital technology. And while this
may be the case for some digital product innovations (e.g.,
Svahn et al., 2017), our study shows that this is not the
case for products with more specialized mechatronic
physical components, like the digitalized movie theatre
discussed in Wang et al. (2022) or, indeed, the 3D printing
machines we studied. While PrintCo was eager to
enhance its printers through its slicing software, doing so
required interactions among physical components to be
more flexible, and any improvements in the slicing
software needed to be coupled with printer components
through functional stubs.

Our findings suggest that organizations design adapter
layers to facilitate connections between and across the
layers that make up the final product architecture.
Adapters allow different functional layers to
communicate with one another and ultimately enable the
joint specialization of those layers while maintaining the
possibility of independently developing individual,
potentially modular components within a layer.

Functional extensions
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Figure 3. Conceptual Model of Layering Digital Technology Components Into a Physical Product Architecture
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Taken together, these findings suggest that within the
layered-modular architecture, not all layers are equal:
While some layers are functional, that is, the dominant
source of innovation, as described in prior work (Yoo et
al.,, 2010), adapter layers are important because they
enable and control information flows across functional
layers. This insight contrasts with research suggesting that
innovation can happen on any layer, with minimal
consideration of other layers (Yoo, 2013; Yoo etal., 2012).
Our analysis suggests that adapter layers are a key enabler
for innovation on functional layers. Imagine a new
navigation app for a smartphone that is useless without a
properly parametrized and accessible GPS sensor.

Adapter layers bear comparison with interfaces (e.g.,
Pujadas et al., 2024) and boundary resources (e.g., Eaton
et al., 2015), which have both been shown to play a
pivotal role in digital innovation. Interfaces define how
individual components must be designed to be
interoperable with one another (Baldwin & Clark, 2000;
Simon, 1996). Boundary resources wrap around
interfaces and provide additional tools that enable an
arm’s length relationship with developers who
contribute to a product (Eaton et al., 2015). In the end,
interfaces and boundary resources ensure compatibility
between components, both internal and external.
Adapter layers are similar to interfaces because they
ensure addressability and compatibility across
functional layers. However, while interfaces define the
rules, methods, and properties that components must
implement to interact consistently, they typically
provide no functionality but only access to functionality
(Ghazawneh & Henfridsson, 2013). For instance,
Baldwin and Clark (2000) describe interfaces in terms
of design rules as purely declarative contracts. Adapters,
by contrast, are implementation-level solutions that
enable communication among otherwise unrelated
components by translating or converting one interface
into another, allowing them to work together without
changing their underlying structure. This enables
adapter layers to operate across and integrate multiple
components (Lee & Berente, 2012) and the layer as a
whole, rather than individual components. Thus, adapter
layers enable innovation in functional layers, because
they have the capacity for change, while interfaces
typically remain stable (Baldwin & Clark, 2000).
Adapter layers enable interactions among functional
layers, and changes in functional layers can create value
for users of a digital product innovation. In this light,
adapter layers are key to the open-ended recombination
across the layered-modular architectures of various
digital products (Henfridsson et al., 2018).

Our study also highlights the crucial role of firmware in
digital product innovation. Firmware has, to date, not
been considered a source of innovation, but is rather
viewed as a static means for controlling physical

Layering the Architecture of Digital Product Innovations

components (Hylving & Schultze, 2020; Lee & Berente,
2012). The locus of digital innovation so far in the
literature has been squarely rooted in the digital
technology components on content or service layers
(Nambisan et al., 2017; Yoo et al., 2010). In contrast,
our analysis uncovered two fundamental activities,
designing digital representations and implementing
machine codes, that are key to embedding a firmware
layer within the product architecture.

This finding carries two significant implications. On the
one hand, it suggests that the scope of digital innovation
research must extend beyond the realm of digital
technology application and service layers to encompass
a more expansive set of digital technology components
that includes not only apps, data, and algorithms but also
firmware. The key distinction of firmware as a digital
technology is its inscription into physical devices. It
does not stand as decoupled and ephemeral digital
material (von Briel et al., 2018); rather, it is, by design,
embedded in and constrained by the geospatial attributes
of the physical components on which it rests, such as
their size, place, material composition, or even weight.
Focusing on firmware thus provides several
opportunities to expand upon our insights. For example,
our study is centered on the early stages of digital
product innovation, where firmware is key to embedding
digital components into product architectures that make
physical components addressable through digital
components. However, we have not yet examined how
the role of firmware may change in the later stages of
digital product innovation. It is conceivable that
firmware may be more malleable and not as firm as
previously thought.

Finally, our findings suggest an extension to the layered-
modular architecture. In Yoo et al.’s (2010) seminal work
on digital innovation, firmware—subsumed under “logical
capability”—plays a subordinate role rather than serving as
a source of innovation. Our work echoes recent research
that has suggested that the architecture of digital product
innovations can be more accurately described as layered
hierarchical rather than modular (Hylving & Schultze,
2020). It extends this line of inquiry by theorizing the
specific techniques that layer product architectures
(Henfridsson et al., 2018; Yoo, 2010; Yoo et al., 2012).
That is, by parametrizing components and arranging
functionality, organizations install adapter layers into
product architectures that can couple physical to digital and
digital to other digital components to introduce new
functionality (Holmstrom, 2018; Hylving & Schultze,
2020; Sandberg et al., 2020). This suggests that a digital
product innovation’s logical capability—firmware—may
play a more central role in enabling combinatorial
innovation processes than assumed by the available
literature because it sits right at the intersection between
physical and digital components.
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5.2 The Locus of Layering: Ascending
Architectural Layers

Our study also provides insights into how layering
unfolds over time. The digital innovation literature
suggests that organizations achieve a layered-modular
architecture by adding layers of digital technology “on
top of” existing product architectures (e.g., Sandberg et
al., 2020; Yoo et al., 2012), and that such design moves
can occur at any time and without a fixed sequence
(Henfridsson et al., 2018). But doing so requires that
products are already amenable to being embedded with
digital technology and flexible enough to cater to
emerging and perhaps unanticipated use cases (Zittrain,
20006). If this is not the case, any digital technology
added to a product architecture may be of limited value
to users because components remain decoupled. Our
study reveals that rather than beginning with high-level
software, layering begins in the lower product layers,
involving only isolated sets of components before
becoming increasingly expansive and ascending the
product architecture.

This finding suggests that path dependencies exist in
layering that may be more pronounced than previously
thought (Henfridsson et al., 2018). Organizations need
to attend to these interdependencies to be able to
introduce new digital functionality on higher layers to
extend a product architecture’s scope. For instance,
PrintCo iterated between the hardware and firmware
layers in the design of digital representations and
machine code instructions. Thus, layering begins in
physical components and ascends architectural layers
over time. Key to this evolution is enabling a larger set
of interactions among product components that digital
technology components can draw on. Recall how
PrintCo used collections of print settings to adapt the
printing process to meet users’ preferences more
effectively: Only after PrintCo wrapped its printers in a
layer of firmware could PrintCo explore how to co-
specialize its slicing software and incorporate external
innovation. As such, although Ilayering involves
considerable iterative development within individual
layers, the locus of layering ascents along an axis of
abstraction in the product architecture.

The insight that layering begins on lower layers before
ascending to higher layers extends our knowledge about
how organizations can meaningfully add digital
technology to their market offerings (e.g., Sandberg et al.,
2020). This work suggests that adding digital technology
enables new interactions among an emergent set of actors,
thus rendering products gradually more generative
(Fiirstenau et al.,, 2023). Our study shows that new
interactions, eventually unfolding across multiple layers,

# For example, substituting is a design rationalization process in which
organizations replace one product component with another, higher-
performing, component. Augmenting is another design rationalization
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initially begin from a narrow focus on the lower layers.
The insight also mirrors the view of Hylving and Schultze
(2020) that digital product innovation resembles a layered
hierarchical rather than strictly modular architecture, a
distinction also noted recently in other studies (e.g.,
Lorenz et al., 2024).

5.3 Operationalizing Layering

Finally, our study also contributes to the literature on
technology and innovation management (Baldwin, 2023;
Galunic & Eisenhardt, 2001; Henderson & Clark, 1990).
The techniques PrintCo used to embed digital technology
within its product architecture complement knowledge
about “design rationalization processes” that drive the
modularization of product architectures (Baldwin &
Clark, 2000).* Parametrizing components and arranging
functionality have in common with design rationalization
that they hide and encapsulate some parts of a product and
abstract details from their implementation to manage
complexity. At the same time, the techniques we describe
also differ in the objectives they pursue from the design
rationalization processes discussed in the literature on
modularity (Baldwin & Clark, 2000). Design
rationalization processes, such as substituting or
augmenting, emphasize independence among modules:
they allow modules to be developed, maintained, and
replaced without affecting the rest of the system.

In contrast, the layering techniques we found focus on
how complementary components—hardware and
software—can be brought together in the first place,
namely by creating dedicated adapter layers that facilitate
communication among previously separate components.
These points of contrast and comparison between layering
and modularization imply that both are amenable to
deliberate operationalization: Just like modular operators,
layering, as we describe it, is actionable for innovators.

5.4 Limitations

Our study has several limitations that present
opportunities for further research. First, our case selection
forms a boundary condition for generalizing our findings.
3D printers are a specific kind of digital product
innovation, which vary in the extent to which physical or
digital components dominate behavior, functionality,
meaning, or value (von Briel et al., 2018; Wang, 2021).
Understanding in depth how parametrizing components
and arranging functionality are required for and enable
recombination in different digital product innovations
such as, for example, consumer devices (e.g., smart home
or wearable technology) versus industrial grade products
(e.g., 3D printers or autonomous cars) or even large-scale
systems (e.g., digital theatres) presents a stimulating

process, in which organizations add further modules to a product
architecture to enhance its functionality (Baldwin & Clark, 2000).



research opportunity to explore the robustness, boundary
conditions, and possibilities for analytical generalization
of the two techniques we developed and of the role of
firmware in digital product innovation more generally.

Further, we explicitly focused on the “artifact” that is the
outcome of digital innovation, namely the 3D printer, its
product components, and architecture. We deliberately
excluded questions of organizing (Lee & Berente, 2012;
Yoo et al., 2012), innovation tools (Marion & Fixson,
2021; Zhang et al., 2021), or exogenous influences such
as financing or infrastructure that might conceivably
shape the design of digital product innovations. For
example, PrintCo raised several rounds of venture capital,
grew substantially, and experienced high employee
attrition—all of which could have conceivably affected
the way they engaged in digital innovation as a process.

Finally, as in other inductive qualitative field studies,
there is inherent subjectivity in our analysis and
interpretation of the collected data. Our primary source of
data was interviews, some of which were retrospective.
This strategy is prone to interviewee bias, recency bias,
and selection bias, which could have impacted the
accuracy of the reported data. By using a variety of data
sources (e.g., both company and public documents) and
focusing on key events that are publicly traceable, we
tried to mitigate these biases. Furthermore, our analysis
and findings were influenced by our use of the literature
on digital innovation and product architecture as
sensitizing lenses and the way in which we conducted
open and axial coding. To ensure rigor in our procedures,
we followed the typical iterative process of analyzing
data, engaging with literature, and collecting new data
(Charmaz, 2006; Glaser & Strauss, 1967; Urquhart et al.,

Layering the Architecture of Digital Product Innovations

2010). We used theoretical sampling logic to identify
follow-up data collection (both documents and
interviewees) to query specific outcomes of our iterative
analysis outcomes (e.g., identifying main innovation
episodes, key events, or specific aspects of firmware
design). In our team, we constantly challenged each
other’s interpretations and conclusions and also engaged
with case informants to test our emerging explanations.
Finally, we developed our emerging theoretical model by
drawing on guidelines for scaling up from data to
concepts to categories (Urquhart et al., 2010).

6 Conclusion

Organizations still struggle to consistently develop and
deliver successful digital product innovations because
digital technology cannot merely be tacked on to product
architectures to create value and unlock generative
potential. We show that the successful design of digital
product innovations requires organizations to embed
adapter layers into product architectures, so that digital
and physical components in a product architecture are not
only modularized but also layered to enable access,
connections, and ultimately recombination.
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