AIS Logo
Living knowledge for digital leadership
All AI Governance & Ethics Digital Transformation & Innovation Supply Chain & IoT SME & IT Management Platform Ecosystems & Strategy Cybersecurity & Risk AI Applications & Technologies Healthcare & Well-being Digital Work & Collaboration
Unraveling the Role of Cyber Insurance in Fortifying Organizational Cybersecurity

Unraveling the Role of Cyber Insurance in Fortifying Organizational Cybersecurity

Wojciech Strzelczyk, Karolina Puławska
This study explores how cyber insurance serves as more than just a financial tool for compensating victims of cyber incidents. Based on in-depth interviews with insurance industry experts and policy buyers, the research analyzes how insurance improves an organization's cybersecurity across three distinct stages: pre-purchase, post-purchase, and post-cyberattack.

Problem As businesses increasingly rely on digital technologies, they face a growing risk of cyberattacks that can lead to severe financial losses, reputational harm, and regulatory penalties. Many companies possess inadequate cybersecurity measures, and there is a need to understand how external mechanisms like insurance can proactively strengthen defenses rather than simply covering losses after an attack.

Outcome - Cyber insurance actively enhances an organization's security posture, not just providing financial compensation after an incident.
- The pre-purchase underwriting process forces companies to rigorously evaluate and improve their cybersecurity practices to even qualify for a policy.
- Post-purchase, insurers require continuous improvement through audits and training, often providing resources and expertise to help clients strengthen their defenses.
- Following an attack, cyber insurance provides access to critical incident management services, including expert support for damage containment, system restoration, and post-incident analysis to prevent future breaches.
cyber insurance, cybersecurity, risk management, organizational cybersecurity, incident response, underwriting
How HireVue Created

How HireVue Created "Glass Box" Transparency for its AI Application

Monideepa Tarafdar, Irina Rets, Lindsey Zuloaga, Nathan Mondragon
This paper presents a case study on HireVue, a company that provides an AI application for assessing job interviews. It describes the transparency-related challenges HireVue faced and explains how it addressed them by developing a "glass box" approach, which focuses on making the entire system of AI development and deployment understandable, rather than just the technical algorithm.

Problem AI applications used for critical decisions, such as hiring, are often perceived as technical "black boxes." This lack of clarity creates significant challenges for businesses in trusting the technology, ensuring fairness, mitigating bias, and complying with regulations, which hinders the responsible adoption of AI in recruitment.

Outcome - The study introduces a "glass box" model for AI transparency, which shifts focus from the technical algorithm to the broader sociotechnical system, including design processes, client interactions, and organizational functions.
- HireVue implemented five types of transparency practices: pre-deployment client-focused, internal, post-deployment client-focused, knowledge-related, and audit-related.
- This multi-faceted approach helps build trust with clients, regulators, and applicants by providing clarity on the AI's application, limitations, and validation processes.
- The findings serve as a practical guide for other AI software companies on how to create effective and comprehensive transparency for their own applications, especially in high-stakes fields.
AI transparency, algorithmic hiring, glass box model, ethical AI, recruitment technology, HireVue, case study
How Germany Successfully Implemented Its Intergovernmental FLORA System

How Germany Successfully Implemented Its Intergovernmental FLORA System

Julia Amend, Simon Feulner, Alexander Rieger, Tamara Roth, Gilbert Fridgen, and Tobias Guggenberger
This paper presents a case study on Germany's implementation of FLORA, a blockchain-based IT system designed to manage the intergovernmental processing of asylum seekers. It analyzes how the project navigated legal and technical challenges across different government levels. Based on the findings, the study offers three key recommendations for successfully deploying similar complex, multi-agency IT systems in the public sector.

Problem Governments face significant challenges in digitalizing services that require cooperation across different administrative layers, such as federal and state agencies. Legal mandates often require these layers to maintain separate IT systems, which complicates data exchange and modernization. Germany's asylum procedure previously relied on manually sharing Excel-based lists between agencies, a process that was slow, error-prone, and created data privacy risks.

Outcome - FLORA replaced inefficient Excel-based lists with a decentralized system, enabling a more efficient and secure exchange of procedural information between federal and state agencies.
- The system created a 'single procedural source of truth,' which significantly improved the accuracy, completeness, and timeliness of information for case handlers.
- By streamlining information exchange, FLORA reduced the time required for initial stages of the asylum procedure by up to 50%.
- The blockchain-based architecture enhanced legal compliance by reducing procedural errors and providing a secure way to manage data that adheres to strict GDPR privacy requirements.
- The study recommends that governments consider decentralized IT solutions to avoid the high hidden costs of centralized systems, deploy modular solutions to break down legacy architectures, and use a Software-as-a-Service (SaaS) model to lower initial adoption barriers for agencies.
intergovernmental IT systems, digital government, blockchain, public sector innovation, case study, asylum procedure, Germany
The Danish Business Authority's Approach to the Ongoing Evaluation of Al Systems

The Danish Business Authority's Approach to the Ongoing Evaluation of Al Systems

Oliver Krancher, Per Rådberg Nagbøl, Oliver Müller
This study examines the strategies employed by the Danish Business Authority (DBA), a pioneering public-sector adopter of AI, for the continuous evaluation of its AI systems. Through a case study of the DBA's practices and their custom X-RAI framework, the paper provides actionable recommendations for other organizations on how to manage AI systems responsibly after deployment.

Problem AI systems can degrade in performance over time, a phenomenon known as model drift, leading to inaccurate or biased decisions. Many organizations lack established procedures for the ongoing monitoring and evaluation of AI systems post-deployment, creating risks of operational failures, financial losses, and non-compliance with regulations like the EU AI Act.

Outcome - Organizations need a multi-faceted approach to AI evaluation, as single strategies like human oversight or periodic audits are insufficient on their own.
- The study presents the DBA's three-stage evaluation process: pre-production planning, in-production monitoring, and formal post-implementation evaluations.
- A key strategy is 'enveloping' AI systems and their evaluations, which means setting clear, pre-defined boundaries for the system's use and how it will be monitored to prevent misuse and ensure accountability.
- The DBA uses an MLOps platform and an 'X-RAI' (Transparent, Explainable, Responsible, Accurate AI) framework to ensure traceability, automate deployments, and guide risk assessments.
- Formal evaluations should use deliberate sampling, including random and negative cases, and 'blind' reviews (where caseworkers assess a case without seeing the AI's prediction) to mitigate human and machine bias.
AI evaluation, AI governance, model drift, responsible AI, MLOps, public sector AI, case study
How Stakeholders Operationalize Responsible AI in Data-Sensitive Contexts

How Stakeholders Operationalize Responsible AI in Data-Sensitive Contexts

Shivaang Sharma, Angela Aristidou
This study investigates the challenges of implementing responsible AI in complex, multi-stakeholder environments such as humanitarian crises. Researchers analyzed the deployment of six AI tools, identifying significant gaps in expectations and values among developers, aid agencies, and affected populations. Based on these findings, the paper introduces the concept of "AI Responsibility Rifts" (AIRRs) and proposes the SHARE framework to help organizations navigate these disagreements.

Problem Traditional approaches to AI safety focus on objective, technical risks like hallucinations or data bias. This perspective is insufficient for data-sensitive contexts because it overlooks the subjective disagreements among diverse stakeholders about an AI tool's purpose, impact, and ethical boundaries. These unresolved conflicts, or "rifts," can hinder the adoption of valuable AI tools and lead to unintended negative consequences for vulnerable populations.

Outcome - The study introduces the concept of "AI Responsibility Rifts" (AIRRs), defined as misalignments in stakeholders' subjective expectations, values, and perceptions of an AI system's impact.
- It identifies five key areas where these rifts occur: Safety, Humanity, Accountability, Reliability, and Equity.
- The paper proposes the SHARE framework, a self-diagnostic questionnaire designed to help organizations identify and address these rifts among their stakeholders.
- It provides core recommendations and caveats for executives to close the gaps in each of the five rift areas, promoting a more inclusive and effective approach to responsible AI.
Responsible AI, AI ethics, stakeholder management, humanitarian AI, AI governance, data-sensitive contexts, SHARE framework
Promises and Perils of Generative AI in Cybersecurity

Promises and Perils of Generative AI in Cybersecurity

Pratim Datta, Tom Acton
This paper presents a case study of a fictional insurance company, based on real-life events, to illustrate how generative artificial intelligence (GenAI) can be used for both offensive and defensive cybersecurity purposes. It explores the dual nature of GenAI as a tool for both attackers and defenders, presenting a significant dilemma for IT executives. The study provides actionable recommendations for developing a comprehensive cybersecurity strategy in the age of GenAI.

Problem With the rapid adoption of Generative AI by both cybersecurity defenders and malicious actors, IT leaders face a critical challenge. GenAI significantly enhances the capabilities of attackers to create sophisticated, large-scale, and automated cyberattacks, while also offering powerful new tools for defense. This creates a high-stakes 'AI arms race,' forcing organizations to decide how to strategically embrace GenAI for defense without being left vulnerable to adversaries armed with the same technology.

Outcome - GenAI is a double-edged sword, capable of both triggering and defending against sophisticated cyberattacks, requiring a proactive, not reactive, security posture.
- Organizations must integrate a 'Defense in Depth' (DiD) strategy that extends beyond technology to include processes, a security-first culture, and continuous employee education.
- Robust data governance is crucial to manage and protect data, the primary target of attacks, by classifying its value and implementing security controls accordingly.
- A culture of continuous improvement is essential, involving regular simulations of real-world attacks (red-team/blue-team exercises) and maintaining a zero-trust mindset.
- Companies must fortify defenses against AI-powered social engineering by combining advanced technical filtering with employee training focused on skepticism and verification.
- Businesses should embrace proactive, AI-driven defense mechanisms like AI-powered threat hunting and adaptive honeypots to anticipate and neutralize threats before they escalate.
Generative AI, Cybersecurity, Black-hat AI, White-hat AI, Threat Hunting, Social Engineering, Defense in Depth
How to Operationalize Responsible Use of Artificial Intelligence

How to Operationalize Responsible Use of Artificial Intelligence

Lorenn P. Ruster, Katherine A. Daniell
This study outlines a practical five-phase process for organizations to translate responsible AI principles into concrete business practices. Based on participatory action research with two startups, the paper provides a roadmap for crafting specific responsibility pledges and embedding them into organizational processes, moving beyond abstract ethical statements.

Problem Many organizations are committed to the responsible use of AI but struggle with how to implement it practically, creating a significant "principle-to-practice gap". This confusion can lead to inaction or superficial efforts known as "ethics-washing," where companies appear ethical without making substantive changes. The study addresses the lack of clear, actionable guidance for businesses, especially smaller ones, on where to begin.

Outcome - Presents a five-phase process for operationalizing responsible AI: 1) Buy-in, 2) Intuition-building, 3) Pledge-crafting, 4) Pledge-communicating, and 5) Pledge-embedding.
- Argues that responsible AI should be approached as a systems problem, considering organizational mindsets, culture, and processes, not just technical fixes.
- Recommends that organizations create contextualized, action-oriented "pledges" rather than simply adopting generic AI principles.
- Finds that investing in responsible AI practices early, even in small projects, helps build organizational capability and transfers to future endeavors.
- Provides a framework for businesses to navigate communication challenges, balancing transparency with commercial interests to build user trust.
Responsible AI, AI Ethics, Operationalization, Systems Thinking, AI Governance, Pledge-making, Startups
Successfully Mitigating AI Management Risks to Scale AI Globally

Successfully Mitigating AI Management Risks to Scale AI Globally

Thomas Hutzschenreuter, Tim Lämmermann, Alexander Sake, Helmuth Ludwig
This study presents an in-depth case study of the industrial AI pioneer Siemens AG to understand how companies can effectively scale artificial intelligence systems. It identifies five critical technology management risks associated with both generative and predictive AI and provides practical recommendations for mitigating them to create company-wide business impact.

Problem Many companies struggle to effectively scale modern AI systems, with over 70% of implementation projects failing to create a measurable business impact. These failures stem from machine learning's unique characteristics, which amplify existing technology management challenges and introduce entirely new ones that firms are often unprepared to handle.

Outcome - Missing or falsely evaluated potential AI use case opportunities.
- Algorithmic training and data quality issues.
- Task-specific system complexities.
- Mismanagement of system stakeholders.
- Threats from provider and system dependencies.
AI management, risk mitigation, scaling AI, generative AI, predictive AI, technology management, case study
How Siemens Empowered Workforce Re- and Upskilling Through Digital Learning

How Siemens Empowered Workforce Re- and Upskilling Through Digital Learning

Leonie Rebecca Freise, Eva Ritz, Ulrich Bretschneider, Roman Rietsche, Gunter Beitinger, and Jan Marco Leimeister
This case study examines how Siemens successfully implemented a human-centric, bottom-up approach to employee reskilling and upskilling through digital learning. The paper presents a four-phase model for leveraging information systems to address skill gaps and provides five key recommendations for organizations to foster lifelong learning in dynamic manufacturing environments.

Problem The rapid digital transformation in manufacturing is creating a significant skills gap, with a high percentage of companies reporting shortages. Traditional training methods are often not scalable or adaptable enough to meet these evolving demands, presenting a major challenge for organizations trying to build a future-ready workforce.

Outcome - The study introduces a four-phase model for developing human-centric digital learning: 1) Recognizing employee needs, 2) Identifying key employee traits (like self-regulation and attitude), 3) Developing tailored strategies, and 4) Aligning strategies with organizational goals.
- Key employee needs for successful digital learning include task-oriented courses, peer exchange, on-the-job training, regular feedback, personalized learning paths, and micro-learning formats ('learning nuggets').
- The paper proposes four distinct learning strategies based on employees' attitude and self-regulated learning skills, ranging from community mentoring for those low in both, to personalized courses for those high in both.
- Five practical recommendations for companies are provided: 1) Foster a lifelong learning culture, 2) Tailor digital learning programs, 3) Create dedicated spaces for collaboration, 4) Incorporate flexible training formats, and 5) Use analytics to provide feedback.
digital learning, upskilling, reskilling, workforce development, human-centric, manufacturing, case study
A Three-Layer Model for Successful Organizational Digital Transformation

A Three-Layer Model for Successful Organizational Digital Transformation

Ferry Nolte, Alexander Richter, Nadine Guhr
This study analyzes the digital transformation journey on the shop floor of automotive supplier Continental AG. Based on this case study, the paper proposes a practical three-layer model—IT evolution, work practices evolution, and mindset evolution—to guide organizations through successful digital transformation. The model provides recommended actions for aligning these layers to reduce implementation risks and improve outcomes.

Problem Many industrial companies struggle with digital transformation, particularly on the shop floor, where environments are often poorly integrated with digital technology. These transformation efforts are frequently implemented as a 'big bang,' overwhelming workers with new technologies and revised work practices, which can lead to resistance, failure to adopt new systems, and the loss of experienced employees.

Outcome - Successful digital transformation requires a coordinated and synchronized evolution across three interdependent layers: IT, work practices, and employee mindset.
- The paper introduces a practical three-layer model (IT Evolution, Work Practices Evolution, and Mindset Evolution) as a roadmap for managing the complexities of organizational change.
- A one-size-fits-all approach fails; organizations must provide tailored support, tools, and training that cater to the diverse skill levels and starting points of all employees, especially lower-skilled workers.
- To ensure adoption, work processes and performance metrics must be strategically adapted to integrate new digital tools, rather than simply layering technology on top of old workflows.
- A cultural shift is fundamental; success depends on moving away from rigid hierarchies to a culture that empowers employees, encourages experimentation, and fosters a collective readiness for continuous change.
Digital Transformation, Organizational Change, Change Management, Shop Floor Digitalization, Three-Layer Model, Case Study, Dynamic Capabilities
Transforming Energy Management with an AI-Enabled Digital Twin

Transforming Energy Management with an AI-Enabled Digital Twin

Hadi Ghanbari, Petter Nissinen
This paper reports on a case study of how one of Europe's largest district heating providers, called EnergyCo, implemented an AI-assisted digital twin to improve energy efficiency and sustainability. The study details the implementation process and its outcomes, providing six key recommendations for executives in other industries who are considering adopting digital twin technology.

Problem Large-scale energy providers face significant challenges in managing complex district heating networks due to fluctuating energy prices, the shift to decentralized renewable energy sources, and operational inefficiencies from siloed departments. Traditional control systems lack the comprehensive, real-time view needed to optimize the entire network, leading to energy loss, higher costs, and difficulties in achieving sustainability goals.

Outcome - The AI-enabled digital twin provided a comprehensive, real-time representation of the entire district heating network, replacing fragmented views from legacy systems.
- It enabled advanced simulation and optimization, allowing the company to improve operational efficiency, manage fluctuating energy prices, and move toward its carbon neutrality goals.
- The system facilitated scenario-based decision-making, helping operators forecast demand, optimize temperatures and pressures, and reduce heat loss.
- The digital twin enhanced cross-departmental collaboration by providing a shared, holistic view of the network's operations.
- It enabled a shift from reactive to proactive maintenance by using predictive insights to identify potential equipment failures before they occur, reducing costs and downtime.
Digital Twin, Energy Management, District Heating, AI, Cyber-Physical Systems, Sustainability, Case Study
Transforming to Digital Product Management

Transforming to Digital Product Management

R. Ryan Nelson
This study analyzes the successful digital transformations of CarMax and The Washington Post to advocate for a strategic shift from traditional IT project management to digital product management. It demonstrates how adopting practices like Agile and DevOps, combined with empowered, cross-functional teams, enables companies to become nimbler and more adaptive in a fast-changing digital landscape. The research is based on extensive field research, including interviews with senior executives from the case study companies.

Problem Many businesses struggle to adapt and innovate because their traditional IT project management methods are too slow and rigid for the modern digital economy. This project-based approach often results in high failure rates, misaligned business and IT goals, and an inability to respond quickly to market changes or new competitors. This gap prevents organizations from realizing the full value of their technology investments and puts them at risk of becoming obsolete.

Outcome - A shift from a project-oriented to a product-oriented mindset is essential for business agility and continuous innovation.
- Successful transformations rely on creating durable, empowered, cross-functional teams that manage a digital product's entire lifecycle, focusing on business outcomes rather than project outputs.
- Adopting practices like dual-track Agile and DevOps enables teams to discover the right solutions for customers while delivering value incrementally and consistently.
- The transition to digital product management is a long-term cultural and organizational journey requiring strong executive buy-in, not a one-time project.
- Organizations should differentiate which initiatives are best suited for a project approach (e.g., migrations, compliance) versus a product approach (e.g., customer-facing applications, e-commerce platforms).
digital product management, IT project management, digital transformation, agile development, DevOps, organizational change, case study
How a Utility Company Established a Corporate Data Culture for Data-Driven Decision Making

How a Utility Company Established a Corporate Data Culture for Data-Driven Decision Making

Philipp Staudt, Rainer Hoffmann
This paper presents a case study of a large German utility company's successful transition to a data-driven organization. It outlines the strategy, which involved three core transformations: enabling the workforce, improving the data lifecycle, and implementing employee-centered data management. The study provides actionable recommendations for industrial organizations facing similar challenges.

Problem Many industrial companies, particularly in the utility sector, struggle to extract value from their data. The ongoing energy transition, with the rise of renewable energy sources and electric vehicles, has made traditional, heuristic-based decision-making obsolete, creating an urgent need for a robust corporate data culture to manage increasing complexity and ensure grid stability.

Outcome - A data culture was successfully established through three intertwined transformations: enabling the workforce, improving the data lifecycle, and transitioning to employee-centered data management.
- Enabling the workforce involved upskilling programs ('Data and AI Multipliers'), creating platforms for knowledge sharing, and clear communication to ensure widespread buy-in and engagement.
- The data lifecycle was improved by establishing new data infrastructure for real-time data, creating a central data lake, and implementing a strong data governance framework with new roles like 'data officers' and 'data stewards'.
- An employee-centric approach, featuring cross-functional teams, showcasing quick wins to demonstrate value, and transparent communication, was crucial for overcoming resistance and building trust.
- The transformation resulted in the deployment of over 50 data-driven solutions that replaced outdated processes and improved decision-making in real-time operations, maintenance, and long-term planning.
data culture, data-driven decision making, utility company, energy transition, change management, data governance, case study
How the Odyssey Project Is Using Old and Cutting-Edge Technologies for Financial Inclusion

How the Odyssey Project Is Using Old and Cutting-Edge Technologies for Financial Inclusion

Samia Cornelius Bhatti, Dorothy E. Leidner
This paper presents a case study of The Odyssey Project, a fintech startup aiming to increase financial inclusion for the unbanked. It details how the company combines established SMS technology with modern innovations like blockchain and AI to create an accessible and affordable digital financial solution, particularly for users in underdeveloped countries without smartphones or consistent internet access.

Problem Approximately 1.7 billion adults globally remain unbanked, lacking access to formal financial services. This financial exclusion is often due to the high cost of services, geographical distance to banks, and the requirement for expensive smartphones and internet data, creating a significant barrier to economic participation and stability.

Outcome - The Odyssey Project developed a fintech solution that integrates old technology (SMS) with cutting-edge technologies (blockchain, AI, cloud computing) to serve the unbanked.
- The platform, named RoyPay, uses an SMS-based chatbot (RoyChat) as the user interface, making it accessible on basic mobile phones without an internet connection.
- Blockchain technology is used for the core payment mechanism to ensure secure, transparent, and low-cost transactions, eliminating many traditional intermediary fees.
- The system is built on a scalable and cost-effective infrastructure using cloud services, open-source software, and containerization to minimize operational costs.
- The study demonstrates a successful model for creating context-specific technological solutions that address the unique needs and constraints of underserved populations.
financial inclusion, fintech, blockchain, unbanked, SMS technology, mobile payments, developing economies
Leveraging Information Systems for Environmental Sustainability and Business Value

Leveraging Information Systems for Environmental Sustainability and Business Value

Anne Ixmeier, Franziska Wagner, Johann Kranz
This study analyzes 31 articles from practitioner journals to understand how businesses can use Information Systems (IS) to enhance environmental sustainability. Based on a comprehensive literature review, the research provides five practical recommendations for managers to bridge the gap between sustainability goals and actual implementation, ultimately creating business value.

Problem Many businesses face growing pressure to improve their environmental sustainability but struggle to translate sustainability initiatives into tangible business value. Managers are often unclear on how to effectively leverage information systems to achieve both environmental and financial goals, a challenge referred to as the 'sustainability implementation gap'.

Outcome - Legitimize sustainability by using IS to create awareness and link environmental metrics to business value.
- Optimize processes, products, and services by using IS to reduce environmental impact and improve eco-efficiency.
- Internalize sustainability by integrating it into core business strategies and decision-making, informed by data from environmental management systems.
- Standardize sustainability data by establishing robust data governance to ensure information is accessible, comparable, and transparent across the value chain.
- Collaborate with external partners by using IS to build strategic partnerships and ecosystems that can collectively address complex sustainability challenges.
Information Systems, Environmental Sustainability, Green IS, Business Value, Corporate Strategy, Sustainability Implementation
The Hidden Causes of Digital Investment Failures

The Hidden Causes of Digital Investment Failures

Joe Peppard, R. M. Bastien
This study analyzes hundreds of digital projects to uncover the subtle, hidden root causes behind their frequent failure or underachievement. It moves beyond commonly cited symptoms, like budget overruns, to identify five fundamental organizational and structural issues that prevent companies from realizing value from their technology investments. The analysis is supported by an illustrative case study of a major insurance company's large-scale transformation program.

Problem Organizations invest heavily in digital technology expecting significant returns, but most struggle to achieve their goals, and project success rates have not improved over time. Despite an abundance of project management frameworks and best practices, companies often address the symptoms of failure rather than the underlying problems. This research addresses the gap by identifying the deep-rooted, often surprising causes for these persistent investment failures.

Outcome - The Illusion of Control: Business leaders believe they are controlling projects through metrics and governance, but this is an illusion that masks a lack of real influence over value creation.
- The Fallacy of the “Working System”: The primary goal becomes delivering a functional IT system on time and on budget, rather than achieving the intended business performance improvements.
- Conflicts of Interest: The conventional model of a single, centralized IT department creates inherent conflicts of interest, as the same group is responsible for designing, building, and quality-assuring systems.
- The IT Amnesia Syndrome: A project-by-project focus leads to a collective organizational memory loss about why and how systems were built, creating massive complexity and technical debt for future projects.
- Managing Expenses, Not Assets: Digital systems are treated as short-term expenses to be managed rather than long-term productive assets whose value must be cultivated over their entire lifecycle.
digital investment, project failure, IT governance, root cause analysis, business value, single-counter IT model, technical debt
Applying the Rite of Passage Approach to Ensure a Successful Digital Business Transformation

Applying the Rite of Passage Approach to Ensure a Successful Digital Business Transformation

Nkosi Leary, Lorry Perkins, Umang Thakkar, Gregory Gimpel
This study examines how a U.S. recruiting company, ASK Consulting, successfully managed a major digital overhaul by treating the employee transformation as a 'rite of passage.' Based on this case study, the paper outlines a three-stage approach (separation, transition, integration) and provides actionable recommendations for leaders, or 'masters of ceremonies,' to guide their workforce through profound organizational change.

Problem Many digital transformation initiatives fail because they focus on technology and business processes while neglecting the crucial human element. This creates a gap where companies struggle to convert their existing workforce from legacy mindsets and manual processes to a future-ready, digitally empowered culture, leading to underwhelming results.

Outcome - Framing a digital transformation as a three-stage 'rite of passage' (separation, transition, integration) can successfully manage the human side of organizational change.
- The initial 'separation' from old routines and physical workspaces is critical for creating an environment where employees are open to new mindsets and processes.
- During the 'transition' phase, strong leadership (a 'master of ceremonies') is needed to foster a new sense of community, establish data-driven norms, and test employees' ability to adapt to the new digital environment.
- The final 'integration' stage solidifies the transformation by making changes permanent, restoring stability, and using the newly transformed employees to train new hires, thereby cementing the new culture.
- By implementing this approach, the case study company successfully automated core operations, which led to significant increases in productivity and revenue with a smaller workforce.
digital transformation, change management, rite of passage, employee transformation, organizational culture, leadership, case study
Strategies for Managing Citizen Developers and No-Code Tools

Strategies for Managing Citizen Developers and No-Code Tools

Olga Biedova, Blake Ives, David Male, Michael Moore
This study examines the use of no-code and low-code development tools by citizen developers (non-IT employees) to accelerate productivity and bypass traditional IT bottlenecks. Based on the experiences of several organizations, the paper identifies the strengths, risks, and misalignments between citizen developers and corporate IT departments. It concludes by providing recommended strategies for managing these tools and developers to enhance organizational agility.

Problem Organizations face a growing demand for digital transformation, which often leads to significant IT bottlenecks and costly delays. Hiring professional developers is expensive and can be ineffective due to a lack of specific business insight. This creates a gap where business units need to rapidly deploy new applications but are constrained by the capacity and speed of their central IT departments.

Outcome - No-code tools offer significant benefits, including circumventing IT backlogs, reducing costs, enabling rapid prototyping, and improving alignment between business needs and application development.
- Key challenges include finding talent with the right mindset, dependency on smaller tool vendors, security and privacy risks from 'shadow IT,' and potential for poor data architecture in citizen-developed applications.
- A fundamental misalignment exists between IT departments and citizen developers regarding priorities, timelines, development methodologies, and oversight, often leading to friction.
- Successful adoption requires organizations to strategically manage citizen development by identifying and supporting 'problem solvers' within the business, providing resources, and establishing clear guidelines rather than overly policing them.
- While no-code tools are crucial for agility in early-stage innovation, scaling these applications requires the architectural expertise of a formal IT department to ensure reliability and performance.
citizen developers, no-code tools, low-code development, IT bottleneck, digital transformation, shadow IT, organizational agility
Load More Showing 216 of 229