Managing Where Employees Work in a Post-Pandemic World
Molly Wasko, Alissa Dickey
This study examines how a large manufacturing company navigated the challenges of remote and hybrid work following the COVID-19 pandemic. Through an 18-month case study, the research explores the impacts on different employee groups (virtual, hybrid, and on-site) and provides recommendations for managing a blended workforce. The goal is to help organizations, particularly those with significant physical operations, balance new employee expectations with business needs.
Problem
The widespread shift to remote work during the pandemic created a major challenge for businesses deciding on their long-term workplace strategy. Companies are grappling with whether to mandate a full return to the office, go fully remote, or adopt a hybrid model. This problem is especially complex for industries like manufacturing that rely on physical operations and cannot fully digitize their entire workforce.
Outcome
- Employees successfully adapted information and communication technology (ICT) to perform many tasks remotely, effectively separating their work from a physical location. - Contrary to expectations, on-site workers who remained at the physical workplace throughout the pandemic reported feeling the most isolated, least valued, and dissatisfied. - Despite demonstrated high productivity and employee desire for flexibility, business leaders still strongly prefer having employees co-located in the office, believing it is crucial for building and maintaining the company's core values. - A 'Digital-Physical Intensity' framework was developed to help organizations classify jobs and make objective decisions about which roles are best suited for on-site, hybrid, or virtual work.
Host: Welcome to A.I.S. Insights, the podcast where we connect academic research to real-world business strategy. I’m your host, Anna Ivy Summers. Host: Today, we’re diving into a challenge every leader is facing: where should our employees work? We’re looking at a fascinating study from MIS Quarterly Executive titled, "Managing Where Employees Work in a Post-Pandemic World". Host: It’s an 18-month case study of a large manufacturing company, exploring the impacts of virtual, hybrid, and on-site work to help businesses balance new employee expectations with their operational needs. Host: To help us unpack this, we have our expert analyst, Alex Ian Sutherland. Alex, welcome back to the show. Expert: Great to be here, Anna. Host: Alex, let's start with the big picture. The study highlights a problem that I know keeps executives up at night. What’s the core tension they identified? Expert: The core tension is a fundamental disconnect. On one hand, employees have experienced the flexibility of remote work and productivity has remained high. They don't want to give that up. Expert: On the other hand, many business leaders are pushing for a full return to the office. They believe that having everyone physically together is essential for building and maintaining the company's culture and values. Expert: This is especially complicated for industries like manufacturing that the study focused on, because you have some roles that can be done from anywhere and others that absolutely require someone to be on a factory floor. Host: So how did the researchers get inside this problem to really understand it? Expert: They did a deep dive into a 100-year-old company they call "IMC," a global manufacturer of heavy-duty vehicles. Over 18 months, they surveyed and spoke with employees from every part of the business—from HR and accounting who went fully virtual, to engineers on a hybrid schedule, to the production staff who never left the facility. Expert: This gave them a 360-degree view of how technology was adopted and how each group experienced the shift. Host: That sounds incredibly thorough. Let's get to the findings. What was the most surprising thing they discovered? Expert: By far the most surprising finding was who felt the most disconnected. The company’s leadership was worried about the virtual workers feeling isolated at home. Expert: But the study found the exact opposite. It was the on-site workers—the ones who came in every day—who reported feeling the most isolated, the least valued, and the most dissatisfied. Host: Wow. That is completely counter-intuitive. Why was that? Expert: Think about their experience. They were coming into a workplace with constant, visible reminders of the risks—masks, safety protocols, social distancing. Their normal face-to-face interactions were severely limited. Expert: They would see empty offices and parking lots, a daily reminder that their colleagues in virtual roles had a flexibility and safety they didn't. One worker described it as feeling like they were "hit by a bulldozer mentally." They felt left behind. Host: That’s a powerful insight. And while this was happening, what did the study find about leadership's perspective? Expert: Despite seeing that productivity and customer satisfaction remained high, the leadership at IMC still had a strong preference for co-location. They felt that the company’s powerful culture was, in their words, "inextricably linked" to having people together in person. This created that disconnect we talked about. Host: This brings us to the most important question for our listeners: what do we do about it? How can businesses navigate this without alienating one group or another? Expert: This is the study's key contribution. They developed a practical tool called the 'Digital-Physical Intensity' framework. Expert: Instead of creating policies based on job titles or departments, this framework helps you classify work based on two simple questions: First, how much of the job involves processing digital information? And second, how much of it involves interacting with physical objects or locations? Host: So it's a more objective way to decide which roles are best suited for on-site, hybrid, or virtual work. Expert: Exactly. A role in HR or accounting is high in information intensity but low in physical intensity, making it a great candidate for virtual work. A role on the assembly line is the opposite. Engineering and design roles often fall in the middle, making them perfect for a hybrid model. Expert: Using a framework like this makes decisions transparent and justifiable, which reduces that feeling of unfairness that was so damaging to the on-site workers' morale. Host: So the first takeaway is to use an objective framework. What’s the second big takeaway for leaders? Expert: The second is to actively challenge the assumption that culture only happens in the office. This study suggests the bigger risk isn't losing culture with remote workers, it's demoralizing the essential employees who have to be on-site. Expert: Leaders need to find new ways to support them. That could mean repurposing empty office space to improve their facilities, offering more scheduling flexibility, or re-evaluating compensation to acknowledge the extra costs and risks they take on. Host: This has been incredibly enlightening, Alex. So, to summarize for our audience: Host: First, the feelings of inequity between employee groups are a huge risk, and contrary to popular belief, it's often your on-site teams who feel the most isolated. Host: Second, leaders must challenge their own deeply-held beliefs about the necessity of co-location for building a strong company culture. Host: And finally, using an objective tool like the Digital-Physical Intensity framework can help you create fair, transparent policies that build trust across your entire blended workforce. Host: Alex Ian Sutherland, thank you for making this research so clear and actionable for us. Expert: My pleasure, Anna. Host: And thank you for tuning into A.I.S. Insights — powered by Living Knowledge. Join us next time for more data-driven strategies for your business.
Managing IT Challenges When Scaling Digital Innovations
Sara Schiffer, Martin Mocker, Alexander Teubner
This paper presents a case study on 'freeyou,' the digital innovation spinoff of a major German insurance company. It examines how the company successfully transitioned its online-only car insurance product from an initial 'exploring' phase to a profitable 'scaling' phase. The study highlights the necessary shifts in IT approaches, organizational structure, and data analytics required to manage this transition.
Problem
Many digital innovations fail when they move from the idea validation stage to the scaling stage, where they need to become profitable and handle large volumes of users. This study addresses the common IT-related challenges that cause these failures and provides practical guidance for managers on how to navigate this critical transition successfully.
Outcome
- Prepare for a significant cultural shift: Management must explicitly communicate the change in focus from creative exploration and prototyping to efficient and profitable operations to align the team and manage expectations. - Rearchitect IT systems for scalability: Systems built for speed and flexibility in the exploration phase must be redesigned or replaced with robust, efficient, and reliable platforms capable of handling a large user base. - Adjust team composition and skills: The transition to scaling requires different expertise, shifting from IT generalists who explore new technologies to specialists focused on process automation, data analytics, and stable operations. Companies must be prepared to bring in new talent and restructure teams accordingly.
Host: Welcome to A.I.S. Insights — powered by Living Knowledge. I’m your host, Anna Ivy Summers. Today, we’re diving into a challenge that trips up so many companies: how to take a great digital idea and successfully scale it into a profitable business.
Host: We'll be exploring a study from the MIS Quarterly Executive titled, "Managing IT Challenges When Scaling Digital Innovations." It examines how a digital spinoff from a major insurance company navigated this exact transition, highlighting the crucial shifts in IT, organization, and data analytics that were required.
Host: Here to break it all down for us is our analyst, Alex Ian Sutherland. Alex, welcome.
Expert: Great to be here, Anna.
Host: So, Alex, let's start with the big problem. We hear about startups and innovation hubs all the time, but this study suggests that moving from a cool prototype to a real, large-scale business is where most of them fail. Why is that transition so difficult?
Expert: It’s a huge challenge, and the study points out that the skills, goals, and technology needed in the early 'exploring' phase are often the polar opposite of what's needed in the 'scaling' phase. In the beginning, it's all about speed, creativity, and testing ideas. But to scale, you suddenly need efficiency, reliability, and profitability. The study actually cites research showing that almost 80% of companies fail when trying to turn a validated idea into a real return on investment.
Host: That's a staggering number. So how did the researchers get an inside look at this problem? What was their approach?
Expert: They conducted a deep-dive case study into a company called 'freeyou,' which was spun off from the large German insurer DEVK to create an online-only car insurance product. The researchers spent hours interviewing key employees at both the spinoff and the parent company, giving them a detailed, real-world view of the journey from a creative experiment to a scaled-up, operational business.
Host: Let's get into what they found. What was the first major lesson from freeyou’s journey?
Expert: The first and perhaps most important finding was the need to prepare for a massive cultural shift. The team's mindset had to change completely. In the early days, they were celebrated for building quick prototypes and had what they called the "courage to leave things out." But when it was time to scale, that approach became risky. Profitability became the main goal, not just cool features.
Host: How do you manage a shift like that without demoralizing the creative team that got you there in the first place?
Expert: Communication from leadership is key. The study shows that freeyou’s CEO was very explicit about the change. He acknowledged the team's frustration but explained why the shift was necessary. He even reframed their identity, telling them, "We have become an IT company that sells insurance," to emphasize that their new focus was on building stable, automated, and efficient digital systems.
Host: That makes sense. It’s not just about mindset, I assume. The actual technology has to change as well.
Expert: Exactly. That’s the second key finding: you must rearchitect your IT systems for scalability. Freeyou started with a flexible, no-code, "one-stop-shop" platform that was perfect for rapid prototyping. But it was incredibly inefficient at handling a large volume of customers. As they grew, they had to gradually replace those initial modules with specialized, "best-of-breed" systems for things like claims and document management to ensure the platform was robust and reliable.
Host: And with new systems, I imagine you need new people, or at least new skills.
Expert: You've hit on the third major finding: adjusting team composition. The initial team was full of IT generalists who were great at experimenting. But the scaling phase required deep specialists—experts in process automation, data analytics, and stable operations. The company had to hire new talent and restructure its teams, moving from one big, collaborative group to specialized teams that could focus on refining specific components of the business.
Host: This is all incredibly insightful. For the business leaders and managers listening, what are the practical, take-home lessons here? What should they be doing differently?
Expert: I’d boil it down to three key actions. First, when you pivot from exploring to scaling, make it an official, well-communicated event. Announce the new goals—profitability, efficiency, reliability—so everyone is aligned and understands why their day-to-day work is changing.
Host: Okay, so be transparent about the shift. What’s next?
Expert: Second, plan your technology for this transition. The architecture that lets you build a quick prototype will almost certainly not support a million users. You have to budget the time and money to rearchitect your systems. Don't let the initial momentum prevent you from building a foundation that can actually handle success.
Host: And the final takeaway?
Expert: Be a strategic talent manager. Actively assess the skills you have versus the skills you’ll need for scaling. You will need to hire specialists. This might mean restructuring your teams or even acknowledging that some of your brilliant initial innovators may not be the right fit for the more structured, operational phase that follows.
Host: Fantastic advice. So, to recap: successfully scaling a digital innovation requires leaders to explicitly manage the cultural shift from exploration to efficiency, be prepared to rearchitect IT systems for stability, and proactively evolve the team's skills to meet the new demands of a scaled business.
Host: Alex, thank you so much for translating this study into such clear, actionable insights.
Expert: My pleasure, Anna.
Host: And thanks to all of you for tuning in to A.I.S. Insights, powered by Living Knowledge. We’ll see you next time.
digital innovation, scaling, IT management, organizational change, case study, insurtech, innovation lifecycle
Identifying and Filling Gaps in Operational Technology Cybersecurity
Abbatemarco Nico, Hans Brechbühl
This study identifies critical gaps in Operational Technology (OT) cybersecurity by drawing on insights from 36 leaders across 14 global corporations. It analyzes the organizational challenges that hinder the successful implementation of OT cybersecurity, going beyond purely technical issues. The research provides practical recommendations for managers to bridge these security gaps effectively.
Problem
As industrial companies embrace 'Industry 4.0', their operational technology (OT) systems, which control physical processes, are becoming increasingly connected to digital networks. This connectivity introduces significant cybersecurity risks that can halt production and cause substantial financial loss, yet many organizations struggle to implement robust security due to organizational, rather than technical, obstacles.
Outcome
- Cybersecurity in OT projects is often treated as an afterthought, bolted on at the end rather than integrated from the start. - Cybersecurity teams typically lack the authority, budget, and top management support needed to enforce security measures in OT environments. - There is a severe shortage of personnel with expertise in both OT and cybersecurity, and a cultural disconnect exists between IT and OT teams. - Priorities are often misaligned, with OT personnel focusing on uptime and productivity, viewing security measures as hindrances. - The tangible benefits of cybersecurity are difficult to recognize and quantify, making it hard to justify investments until a failure occurs.
Host: Welcome to A.I.S. Insights, powered by Living Knowledge. I’m your host, Anna Ivy Summers. Today, we're digging into a critical issue for any company with physical operations. We're looking at a new study from MIS Quarterly Executive titled "Identifying and Filling Gaps in Operational Technology Cybersecurity". In short, it explores the deep organizational challenges that stop businesses from properly securing the technology that runs their factories and industrial sites. Here to break it down for us is our analyst, Alex Ian Sutherland. Alex, welcome. Expert: Great to be here, Anna. Host: Alex, let's start with the basics. We all hear about IT, or Information Technology. What is OT, Operational Technology, and why is it suddenly such a big concern? Expert: Of course. Think of OT as the technology that controls the physical world. It’s the hardware and software running everything from robotic arms on an assembly line to the control systems in a power plant. Historically, these systems were isolated, completely disconnected from the internet. But now, with Industry 4.0, companies are connecting them to their IT networks to get data and improve efficiency. Host: And connecting them opens the door to cyberattacks. Expert: A very big door. The study highlights that this isn't a theoretical risk. It points to a 100-150% surge in cyberattacks against the manufacturing sector in recent years. And an attack on OT isn't about stealing customer data; it’s about shutting down production. The study found a successful breach can cost a company anywhere from 3 to 7 million dollars per incident and halt operations for an average of four days. Host: That’s a massive business disruption. So how did the researchers in this study get to the root of why this is so hard to solve? Expert: They focused on the people and the organization, not just the tech. They conducted a series of in-depth focus groups with 36 senior leaders—people like Chief Information Officers and Chief Information Security Officers—from 14 major global corporations in manufacturing, energy, and logistics. They wanted to understand the human and structural roadblocks. Host: And what did these leaders say? What are the key findings? Expert: They found a consistent set of organizational gaps. The first is that cybersecurity is often treated as an afterthought. One security leader used the phrase "bolted on afterwards," which perfectly captures the problem. They build a new system and then try to wrap security around it at the end. Host: Why does that happen? Is it a technical oversight? Expert: It’s more of a cultural problem, which is the second major finding. There’s a huge disconnect between the IT cybersecurity teams and the OT plant-floor teams. The OT engineers prioritize uptime and productivity above all else. To them, a security update that requires shutting down a machine, even for an hour, is a direct hit to production value. Host: So the two teams have completely different priorities. Expert: Exactly. One director in the study described a situation where his factory team saw the central security staff as people who were just "reading a policy sheet," without understanding "what's really going on" in the plant. This leads to the third finding: cybersecurity teams in these environments often lack real authority, budget, and support from top management to enforce security rules. Host: I can imagine it's difficult to get budget to prevent a problem that hasn't happened yet. Expert: That's the final key finding. The study participants said the tangible benefits of good cybersecurity are almost invisible. It’s a classic case of "you don't know it's working until it fails." This makes it incredibly hard to justify the investment compared to, say, a new machine that will clearly increase output. Host: This is a complex organizational puzzle. So, for the business leaders listening, what are the practical takeaways? Why does this matter for them, and what can they do? Expert: This is the most important part. The study offers three clear recommendations that I'd frame as key business takeaways. First: you have to bridge the cultural divide. This isn't about IT forcing rules on OT. It’s about creating mutual understanding through cross-training, and even creating new roles for people who can speak both languages—technology and operations. The goal should be "Security by Design," baked in from the start. Host: So, build bridges, not walls. What's the second takeaway? Expert: Empower your security leadership. A Chief Information Security Officer, or CISO, needs real authority that extends to the factory floor, with the budget and C-suite backing to make critical decisions. One executive in the study recounted how it took a cyberattack simulation that showed the board how an incident could "bring us to our knees" to finally get the necessary support and funding. Host: It sounds like leadership needs to feel the risk to truly act on it. What’s the final piece of advice? Expert: Find the win-win. Don't frame cybersecurity as just a cost or a blocker. The study found that collaboration can lead to unexpected benefits. For instance, one company installed security monitoring tools, which had the side effect of giving the engineering team incredible new visibility into their own processes, which they then used to optimize the entire factory. Security actually became a business enabler. Host: That’s a powerful shift in perspective. To summarize, then: the growing risk to our industrial systems is fundamentally an organizational problem, not a technical one. The solution involves bridging the cultural gap between operations and security teams, empowering security leaders with real authority, and actively looking for ways that good security can also drive business value. Alex, this has been incredibly insightful. Thank you for joining us. Expert: My pleasure, Anna. Host: And thank you to our listeners for tuning into A.I.S. Insights. Join us next time as we continue to explore the ideas shaping business and technology.
Operational Technology, OT Cybersecurity, Industry 4.0, Cybersecurity Gaps, Risk Management, Industrial Control Systems, Technochange
Identifying and Addressing Senior Executives' Different Perceptions of the Value of IT Investments
Alastair Tipple, Hameed Chughtai, Jonathan H. Klein
This study explores how Chief Information Officers (CIOs) can uncover and manage differing opinions among senior executives regarding the value of IT investments. Using a case study at a U.K. firm, the researchers applied a method based on Repertory (Rep) Grid analysis and heat maps to make these perception gaps visible and actionable.
Problem
The full benefits of IT investments are often not realized because senior leaders lack a shared understanding of their value and effectiveness. This misalignment can undermine project support and success, yet CIOs typically lack practical tools to objectively identify and resolve these hidden differences in perception within the management team.
Outcome
- Repertory (Rep) Grids combined with heat maps are a practical and effective technique for making executives' differing perceptions of IT value explicit and visible. - The method provides a structured, data-driven foundation for CIOs to have tailored, objective conversations with individual leaders to build consensus. - By creating a common set of criteria for evaluation, the process helps align the senior management team and fosters a shared understanding of IT's strategic contribution. - The visual nature of heat maps helps focus discussions on specific points of disagreement, reducing emotional conflict and accelerating the path to a common ground. - The approach allows CIOs to develop targeted action plans to address specific gaps in understanding, ultimately improving support for and the realization of value from IT investments.
Host: Welcome to A.I.S. Insights, powered by Living Knowledge. I'm your host, Anna Ivy Summers, and with me today is our expert analyst, Alex Ian Sutherland. Expert: Great to be here, Anna. Host: Today we're diving into a fascinating study from MIS Quarterly Executive titled, "Identifying and Addressing Senior Executives' Different Perceptions of the Value of IT Investments." Alex, what's the big picture here? Expert: This study tackles a problem many companies face: how to get the entire leadership team on the same page about the value of IT projects. It presents a practical method for CIOs to uncover, visualize, and manage differing opinions among senior executives to make sure these major investments succeed. Host: So let's talk about that, the big problem. Why is it so important for everyone to be perfectly aligned? Expert: Well, the study points out that the full benefits of IT investments often go unrealized precisely because leaders lack a shared understanding of their value. It’s less about the technology itself and more about the “human factors.” Host: You mean hidden disagreements behind boardroom smiles? Expert: Exactly. An executive might nod in a meeting but secretly believe a project is a waste of money or doesn't align with their department's goals. The CIO in the case study even said, “You might have people reaching consensus in the room, when underlying they’re actually going—I don’t really agree with that.” This silent misalignment undermines project support, but CIOs traditionally lack the tools to see it, let alone fix it. Host: So how did this study propose to make those hidden views visible? What was the approach? Expert: The researchers used a really clever method based on something called Repertory Grid analysis, or Rep Grids. Host: That sounds a bit technical for our audience. Can you simplify it? Expert: Absolutely. Think of it as a highly structured interview. The researchers sat down with each senior executive one-on-one. They asked them to compare various IT projects and, more importantly, to articulate the personal criteria they used to judge them. For example, one executive might value "Ambitious change" while another prioritizes "Low maintenance cost." Host: So it’s about understanding what each leader individually cares about. Expert: Precisely. They create a personal "grid" for each executive. Then, they consolidate all those unique criteria into a single, standard grid. Everyone then uses this shared scorecard to rate the same IT projects. This creates a common language for the entire team to evaluate IT value. Host: Once you have all that data, what were the key findings? How do you turn those ratings into something actionable? Expert: This is the most visual and impactful part. They compared each executive's ratings on that standard grid to the CIO's ratings and turned the differences into a heat map. Host: A heat map? You mean with colors showing hot spots? Expert: Yes. A green square means the executive and the CIO are in agreement. A bright red square, however, shows a major disagreement. You can see, instantly, that the CEO perceives the new cybersecurity project as having low "Tangible benefits," while the CIO thinks the opposite. Host: So you can literally see the perception gaps. That seems powerful. Expert: It’s incredibly powerful. The study found that making these differences visible and data-driven is the key. It removes emotion and politics from the discussion. Instead of a vague disagreement, the CIO can now point to a specific red square on the heat map and have a focused, objective conversation. Host: This is the crucial part for our listeners. Why does this matter for their business? What are the key takeaways? Expert: The biggest takeaway is that this provides a clear roadmap for building consensus. The CIO at the company in the study said the heat maps helped him "know where to focus my energies" and "where not to spend my time." Host: So it makes communication much more efficient and targeted. Expert: Exactly. The CIO can now have tailored conversations. He can go to the Chief Financial Officer and say, "I see we have very different views on how this project impacts our risk profile. Let's talk specifically about that." The conversation is grounded in criteria the CFO themselves helped create, which gives it immediate credibility. Host: And by resolving these specific points of friction, you build genuine alignment for the project? Expert: That's the goal. It fosters a shared understanding of IT's strategic contribution and reduces the kind of damaging, unspoken conflict that can derail projects. It aligns the team to ensure the company actually realizes the value it's paying for. Host: Let's summarize. The success of major IT investments is often threatened by hidden disagreements among senior leaders. Expert: Correct. A lack of shared understanding is a critical risk. Host: This study proposes a method using Repertory Grids to capture individual viewpoints and heat maps to visually pinpoint the exact areas of misalignment. Expert: Yes, it makes the invisible, visible. Host: And by using this data, CIOs can lead targeted, objective discussions to build true consensus, improve support for projects, and ultimately drive better business results. Host: Alex Ian Sutherland, thank you for sharing these insights with us. Expert: It was my pleasure, Anna. Host: And thank you for listening to A.I.S. Insights, powered by Living Knowledge.
IT investment value, senior management perception, Repertory Grid, heat maps, CIO, strategic alignment, social alignment
How WashTec Explored Digital Business Models
Christian Ritter, Anna Maria Oberländer, Bastian Stahl, Björn Häckel, Carsten Klees, Ralf Koeppe, and Maximilian Röglinger
This case study describes how WashTec, a global leader in the car wash industry, successfully explored and developed new digital business models. The paper outlines the company's structured four-phase exploration approach—Activation, Inspiration, Evaluation, and Monetization—which serves as a blueprint for digital innovation. This process offers a guide for other established, incumbent companies seeking to navigate their own digital transformation.
Problem
Many established companies excel at enhancing their existing business models but struggle to explore and develop entirely new digital ones. This creates a significant challenge for traditional, hardware-centric firms needing to adapt to a digital landscape. The study addresses how an incumbent company can overcome this inertia and systematically innovate to create new value propositions and maintain a competitive edge.
Outcome
- WashTec developed a structured four-phase approach (Activation, Inspiration, Evaluation, Monetization) that enabled the successful exploration of digital business models. - The process resulted in three distinct digital business models: Automated Chemical Supply, a Digital Wash Platform, and In-Car Washing Services. - The study offers five recommendations for other incumbent firms: set clear boundaries for exploration, utilize digital-savvy pioneers while involving the whole organization, anchor the process with strategic symbols, consider value beyond direct revenue, and integrate exploration objectives into the core business.
Host: Welcome to A.I.S. Insights, the podcast powered by Living Knowledge, where we translate complex research into actionable business strategy. I’m your host, Anna Ivy Summers. Host: Today, we’re looking at how established companies can innovate in the digital age. We're diving into a case study titled "How WashTec Explored Digital Business Models." It outlines how a global leader in the car wash industry successfully developed new digital services. Host: To help us unpack this is our analyst, Alex Ian Sutherland. Welcome, Alex. Expert: Thanks for having me, Anna. Host: Alex, let's start with the big picture. WashTec is a leader in a very physical industry—making car wash systems. What was the problem they were trying to solve? Expert: It's a classic challenge many established companies face. They're excellent at improving their existing products—what the study calls 'exploiting' their current model. But they struggle to explore and create entirely new digital business models. Host: So, it's the innovator's dilemma. You're so good at your core business that it's hard to think outside of it. Expert: Exactly. WashTec saw new, digitally native startups entering the market with app-based solutions, threatening to turn their hardware into a commodity. They knew they needed a systematic way to innovate beyond just making better washing machines. Host: How did they go about that? It sounds like a huge undertaking for a traditional, hardware-centric company. Expert: They developed a very structured, four-phase approach. It began with 'Activation,' where senior management created a clear digital vision—a "North Star" for the company to follow. Host: A North Star. I like that. What came next? Expert: The second phase was 'Inspiration.' They held workshops across the company, involving over 50 employees, and even brought in university students to generate a wide range of ideas—110 initial ideas, in fact. Host: And after they had all these ideas? Expert: That led to 'Evaluation.' They built prototypes, or what we'd call minimum viable products, for the most promising concepts to test assumptions about what customers actually wanted. The final phase was 'Monetization,' where they developed solid business cases for the validated ideas. Host: It sounds incredibly thorough. So, after all that, what were the results? What new business models did this process actually create? Expert: It resulted in three distinct digital business models. First, an 'Automated Chemical Supply' service. This is a subscription model that automatically reorders chemicals for car wash operators. It reduced customer churn by an incredible 50%. Host: That’s a powerful result. What else? Expert: Second, they created a 'Digital Wash Platform.' This is a consumer-facing app that connects drivers with car wash locations, allowing them to book and pay digitally. Operators on the platform saw a 10% increase in washes sold. Host: And the third one sounds quite futuristic. Expert: It is. It’s called 'In-Car Washing Services.' It enables drivers to find and pay for a car wash directly from their car's navigation or infotainment system. It's a strategic move, anticipating a future of connected, self-driving cars. Host: Fascinating. So this brings us to the most important question for our listeners: what are the key takeaways? What can other business leaders learn from WashTec's journey? Expert: The study highlights five key recommendations, but I think two are especially critical. First, set clear boundaries. Innovation needs focus. WashTec decided early on to stick to the car wash domain and not get distracted by, say, developing systems for washing trains. Host: That makes sense. Aimless exploration is a recipe for failure. What's the second key takeaway? Expert: Consider value beyond direct revenue. Not every digital initiative has to be a cash cow from day one. The automated chemical supply, for instance, delivered immense value through customer loyalty and operational efficiency, which are just as important as direct sales. Host: That’s a crucial mindset shift. Any other important lessons? Expert: Yes, they made their digital vision tangible by creating a 'digital target picture' that was displayed in offices. This visual symbol, their North Star, kept everyone aligned. They also made sure to involve a mix of digital-savvy pioneers and experts from the core business to ensure new ideas were both innovative and practical. Host: So to summarize, it seems the lesson is that for a traditional company to succeed in digital innovation, it needs a structured process, a clear vision, and a broad definition of value. Expert: That's a perfect summary, Anna. It’s a blueprint that almost any incumbent company can adapt for their own digital transformation journey. Host: Alex, this has been incredibly insightful. Thank you for breaking it down for us. Expert: My pleasure. Host: And thank you to our audience for tuning in to A.I.S. Insights. Join us next time as we continue to connect research with reality.
digital transformation, business model innovation, incumbent firms, case study, WashTec, digital strategy, exploration
How to Successfully Navigate Crisis-Driven Digital Transformations
Ralf Plattfaut, Vincent Borghoff
This study investigates how digital transformations initiated by a crisis, such as the COVID-19 pandemic, differ from transformations under normal circumstances. Through case studies of three German small and medium-sized organizations (the 'Mittelstand'), the research identifies challenges to established transformation 'logics' and provides recommendations for successfully managing these events.
Problem
While digital transformation is widely studied, there is little understanding of how the process works when driven by an external crisis rather than strategic planning. The COVID-19 pandemic created an urgent, unprecedented need for businesses to digitize their operations, but existing frameworks were ill-suited for this high-pressure, uncertain environment.
Outcome
- The trigger for digital transformation in a crisis is the external shock itself, not the emergence of new technology. - Decision-making shifts from slow, consensus-based strategic planning to rapid, top-down ad-hoc reactions to ensure survival. - Major organizational restructuring is deferred; instead, companies form small, agile steering groups to manage the transformation efforts. - Normal organizational barriers like inertia and resistance to change significantly decrease during the crisis due to the clear and urgent need for action. - After the crisis, companies must actively work to retain the agile practices learned and manage the potential re-emergence of resistance as urgency subsides.
Host: Welcome to A.I.S. Insights — powered by Living Knowledge. I’m your host, Anna Ivy Summers. Host: Today, we're diving into a fascinating study titled "How to Successfully Navigate Crisis-Driven Digital Transformations." Host: It explores how digital overhauls prompted by a crisis, like the recent pandemic, are fundamentally different from those planned in normal times. And here to break it all down for us is our expert analyst, Alex Ian Sutherland. Welcome, Alex. Expert: Great to be here, Anna. Host: Alex, let's start with the big picture. We all know digital transformation is a business buzzword, but this study focuses on a very specific scenario. What's the core problem it addresses? Expert: The problem is that most of our playbooks for digital transformation are designed for peacetime. They assume you have time for strategic planning and consensus-building. Expert: But what happens when a crisis hits, as COVID-19 did, and suddenly your entire business model is at risk? Existing frameworks just weren't built for that kind of high-pressure, high-stakes environment where you have to adapt overnight just to survive. Host: So how did the researchers get inside this chaotic process to understand it? Expert: They conducted in-depth case studies on three small and medium-sized German organizations—a bank, a regional development agency, and a manufacturing firm. This allowed them to see, up close, how these companies navigated the transformation from the very beginning of the crisis. Host: And what did they find? What makes a crisis-driven transformation so different? Expert: The biggest difference is the trigger. In normal times, a new technology appears and a company strategically decides how to use it. In a crisis, the trigger is the external shock itself. Survival becomes the only goal, and technology is just the tool you grab to make that happen. Host: It sounds like a shift from proactive strategy to pure reaction. How does that impact decision-making? Expert: It completely flips it. Long, careful, bottom-up planning is replaced by rapid, top-down, ad-hoc decisions. The study found that instead of forming large project teams, these companies created small, agile steering groups of senior leaders who could make 'good enough' decisions immediately. Host: What about the typical resistance to change we always hear about? Did that get in the way? Expert: That's one of the most interesting findings. Those normal barriers—organizational inertia, employee resistance—they largely disappeared. The study shows that when the threat is existential, the need for change becomes obvious to everyone. The urgency of the situation creates a powerful, shared purpose. Host: So, the crisis forces agility. But what happens when the immediate danger passes? Expert: That’s the catch. The study warns that once the urgency fades, resistance can re-emerge. Employees might feel 'digital oversaturation,' or old cultural habits can creep back in. The challenge then becomes how to hold on to the positive changes. Host: This is where it gets critical for our listeners. Alex, what are the practical takeaways for business leaders who might face the next crisis? Expert: The study offers some clear recommendations. First, in a crisis, suspend normal bottom-up decision-making. Use a small, top-down steering group to ensure speed and clarity. Host: So, command and control is key in the short term. What's next? Expert: Second, don't aim for the perfect solution. Aim for a 'satisfactory' one that can be implemented fast. You can optimize it later. As one manager in the study noted, they initially went for solutions that were simply "available and cost-effective in the short term." Host: That makes sense. Get the lifeboat in the water before you worry about what color to paint it. Expert: Exactly. Third, use the crisis as a catalyst for cultural change. Since the usual barriers are down, it's a unique opportunity to build a more agile, error-tolerant culture. Communicate that initial solutions are experiments, not permanent fixtures. Host: And the final takeaway? Expert: Don't just snap back to the old way of doing things. After the crisis, consciously evaluate the crisis-mode practices you adopted. Keep the agility, keep the speed, and embed them into your new normal. Don't let the lessons learned go to waste. Host: Fantastic insights. So, to recap: a crisis changes all the rules of digital transformation. The key for leaders is to embrace top-down speed, aim for 'good enough' solutions, use the moment to build a more resilient culture, and then be intentional about retaining those new capabilities. Host: Alex Ian Sutherland, thank you so much for shedding light on such a timely topic. Expert: My pleasure, Anna. Host: And thank you to our audience for tuning in to A.I.S. Insights — powered by Living Knowledge. Join us next time as we translate another key piece of research into actionable business intelligence.
Digital Transformation, Crisis Management, Organizational Change, German Mittelstand, SMEs, COVID-19, Business Resilience
How to Design a Better Cybersecurity Readiness Program
This study explores the common pitfalls of four types of cybersecurity training by interviewing employees at large accounting firms. It identifies four unintended negative consequences of mistraining and overtraining and, in response, proposes the LEAN model, a new framework for designing more effective cybersecurity readiness programs.
Problem
Organizations invest heavily in cybersecurity readiness programs, but these initiatives often fail due to poor design, leading to mistraining and overtraining. This not only makes the training ineffective but can also create adverse effects like employee anxiety and fatigue, paradoxically amplifying an organization's cyber vulnerabilities instead of reducing them.
Outcome
- Conventional cybersecurity training often leads to four adverse effects on employees: threat anxiety, security fatigue, risk passivity, and cyber hesitancy. - These individual effects cause significant organizational problems, including erosion of individual performance, fragmentation of team dynamics, disruption of client experiences, and stagnation of the security culture. - The study proposes the LEAN model to counteract these issues, based on four strategies: Localize, Empower, Activate, and Normalize. - The LEAN model recommends tailoring training to specific roles (Localize), fostering ownership and authority (Empower), promoting coordinated action through collaborative exercises (Activate), and embedding security into daily operations to build a proactive culture (Normalize).
Host: Welcome to A.I.S. Insights, the podcast where we connect Living Knowledge with business innovation. I'm your host, Anna Ivy Summers. Host: Today, we're diving into a fascinating new study called "How to Design a Better Cybersecurity Readiness Program." With me is our analyst, Alex Ian Sutherland. Alex, welcome. Expert: Great to be here, Anna. Host: This study explores the common pitfalls of cybersecurity training, looking at what happens when we mistrain or overtrain employees. More importantly, it proposes a new framework for getting it right. Host: So, Alex, let's start with the big picture. Companies are pouring billions into cybersecurity training. What's the problem this study identified? Expert: The problem is that much of that investment is wasted. The study shows that poorly designed training doesn't just fail to work; it can actually make things worse. Host: Worse? How so? Expert: Instead of reducing risk, it can create what the study calls adverse effects, like extreme anxiety about security, or a kind of burnout called security fatigue. Paradoxically, this can amplify an organization's vulnerabilities. Host: So our attempts to build a human firewall are actually creating cracks in it. How did the researchers uncover this? What was their approach? Expert: They went straight to the source. They conducted in-depth interviews with 23 employees at the four major U.S. accounting firms—organizations that are on the front lines of handling sensitive client data. Host: And what were the key findings from those interviews? What are these negative side effects you mentioned? Expert: The study identified four main consequences. The first is Threat Anxiety, where employees become so hyper-aware and fearful of making a mistake that their productivity drops. They second-guess every email they open. Host: I can imagine that. What's next? Expert: Second is Security Fatigue. This is cognitive burnout from constant alerts, repetitive training, and complex rules. Employees get overwhelmed and simply tune out, which is incredibly dangerous. Host: It sounds like alarm fatigue for the inbox. Expert: Exactly. The third is Risk Passivity, which is a paradoxical outcome. Some employees become so desensitized by constant warnings they start ignoring real threats. Others become paralyzed by the perceived risk of every action. Host: And the last one? Expert: The fourth is Cyber Hesitancy. This is a reluctance to use new tools or even collaborate with colleagues for fear of blame. It creates a culture of suspicion, not security. The study found this fragments team dynamics and stalls innovation. Host: These sound like serious cultural issues, not just IT problems. This brings us to the most important question for our listeners: Why does this matter for business, and what's the solution? Expert: It matters because the old approach is broken. The study proposes a new framework to fix it, called the LEAN model. It's an acronym for four key strategies. Host: Okay, break it down for us. What does LEAN stand for? Expert: The 'L' is for Localize. It means stop the one-size-fits-all training. Tailor the content to an employee's specific role. What an accountant needs to know is different from someone in marketing. Host: That makes sense. What about 'E'? Expert: 'E' is for Empower. This is about fostering ownership. Instead of just pushing rules, involve employees in creating and improving security protocols. This gives them a real stake in the outcome. Host: From passive recipient to active participant. I like it. What's 'A'? Expert: 'A' is for Activate. This means moving beyond solo quizzes to collaborative, team-based exercises. Let teams practice responding to a simulated threat together, fostering coordinated action and mastery. Host: And finally, 'N'? Expert: 'N' is for Normalize. This is the goal: embed security so deeply into daily operations that it becomes a natural part of the workflow, not a separate, dreaded task. It reframes security as a business enabler, not a barrier. Host: So, to summarize, it seems the core message is that our cybersecurity training is often counterproductive, creating negative effects like fatigue and anxiety. Host: The solution is a more human-focused, LEAN approach: Localize the training, Empower employees to take ownership, Activate teamwork through practice, and Normalize security into the company culture. Host: Alex, thank you for breaking that down for us. It’s a powerful new way to think about security. Expert: My pleasure, Anna. Host: And thank you to our listeners for tuning into A.I.S. Insights — powered by Living Knowledge. Join us next time as we explore the latest research impacting your business.
This paper presents an in-depth case study on how the global technology company Siemens successfully moved artificial intelligence (AI) projects from pilot stages to full-scale, value-generating applications. The study analyzes Siemens' journey through three evolutionary stages, focusing on the concept of 'AI democratization', which involves integrating the unique skills of domain experts, data scientists, and IT professionals. The findings provide a framework for how other organizations can build the necessary capabilities to adopt and scale AI technologies effectively.
Problem
Many companies invest in artificial intelligence but struggle to progress beyond small-scale prototypes and pilot projects. This failure to scale prevents them from realizing the full business value of AI. The core problem is the difficulty in making modern AI technologies broadly accessible to employees, which is necessary to identify, develop, and implement valuable applications across the organization.
Outcome
- Siemens successfully scaled AI by evolving through three stages: 1) Tactical AI pilots, 2) Strategic AI enablement, and 3) AI democratization for business transformation. - Democratizing AI, defined as the collaborative integration of domain experts, data scientists, and IT professionals, is crucial for overcoming key adoption challenges such as defining AI tasks, managing data, accepting probabilistic outcomes, and addressing 'black-box' fears. - Key initiatives that enabled this transformation included establishing a central AI Lab to foster co-creation, an AI Academy for upskilling employees, and developing a global AI platform to support scaling. - This approach allowed Siemens to transform manufacturing processes with predictive quality control and create innovative healthcare products like the AI-Rad Companion. - The study concludes that democratizing AI creates value by rooting AI exploration in deep domain knowledge and reduces costs by creating scalable infrastructures and processes.
Host: Welcome to A.I.S. Insights, the podcast powered by Living Knowledge where we break down complex research into actionable business strategy. I’m your host, Anna Ivy Summers. Host: Today, we’re diving into a fascinating study titled "How Siemens Democratized Artificial Intelligence." It’s an in-depth look at how a global giant like Siemens successfully moved AI projects from small pilots to full-scale, value-generating applications. Host: With me is our analyst, Alex Ian Sutherland. Alex, great to have you. Expert: Great to be here, Anna. Host: So, let's start with the big picture. We hear a lot about companies investing in AI, but the study suggests many are hitting a wall. What's the core problem they're facing? Expert: That's right. The problem is often called 'pilot purgatory'. Companies get excited, they run a few small-scale AI prototypes, and they work. But then, they get stuck. They fail to scale these projects across the organization, which means they never see the real business value. Host: Why is scaling so hard? What’s the roadblock? Expert: The study identifies a few key challenges. First, defining the right tasks for AI. This requires deep business knowledge. Second, dealing with data—you need massive amounts for training, and it has to be the *right* data. Expert: And perhaps the biggest hurdles are cultural. AI systems give probabilistic answers—'maybe' or 'likely'—not the black-and-white answers traditional software provides. That requires a shift in mindset. Plus, there’s the 'black-box' fear: if you don’t understand how the AI works, how can you trust it? Host: That makes sense. It's as much a people problem as a technology problem. So how did the researchers in this study figure out how Siemens cracked this code? Expert: They conducted an in-depth case study, looking at Siemens' journey over several years. They interviewed key leaders and practitioners across different divisions, from healthcare to manufacturing, to build a comprehensive picture of their transformation. Host: And what did they find? What was the secret sauce for Siemens? Expert: The key finding is that Siemens succeeded by intentionally evolving through three distinct stages. They didn't just jump into the deep end. Host: Can you walk us through those stages? Expert: Of course. Stage one, before 2016, was called "Let a thousand flowers bloom." It was very tactical. Lots of small, isolated AI pilot projects were happening, but they weren't connected to a larger strategy. Expert: Then came stage two, "Strategic AI Enablement." This is when senior leadership got serious, communicating that AI was critical for the company's future. They created an AI Lab to bring business experts and data scientists together to co-create solutions. Host: And the final stage? Expert: The third and current stage is "AI Democratization for Business Transformation." This is the real game-changer. The goal is to make AI accessible and usable for everyone, not just a small group of specialists. Host: The study uses that term a lot—'AI Democratization'. Can you break down what that means in practice? Expert: It’s not about giving everyone coding tools. It’s about creating a collaborative structure that integrates the unique skills of three specific groups: the domain experts—these are your engineers, doctors, or factory managers who know the business problems inside and out. Expert: Then you have the data scientists, who build the models. And finally, the IT professionals, who build the platforms and infrastructure to scale the solutions securely. Democratization is the process of making these three groups work together seamlessly. Host: This sounds great in theory. So, why does this matter for businesses listening right now? What is the practical takeaway? Expert: This is the most crucial part. The study frames the business impact in two ways: driving value and reducing cost. Expert: First, on the value side, democratization roots AI in deep domain knowledge. The study highlights a case at a Siemens factory where they initially just gave data scientists a huge amount of production data and said, "find the golden nugget." It didn't work. Host: Why not? Expert: Because the data scientists didn't have the context. It was only when they teamed up with the process engineers—the domain experts—that they could identify the most valuable problems to solve, like predicting quality control bottlenecks. Value comes from solving real problems, and your business experts are the ones who know those problems best. Host: Okay, so involving business experts drives value. What about the cost side? Expert: Democratization lowers the long-term cost of AI. By creating centralized resources—like an AI Academy to upskill employees and a global AI platform—you create a scalable foundation. Instead of every department reinventing the wheel for each new project, you have shared tools, shared knowledge, and a common infrastructure. This makes deploying new AI applications faster and much more cost-efficient. Host: So it's about building a sustainable, company-wide capability, not just a collection of one-off projects. Expert: Exactly. That's how you escape pilot purgatory and start generating real, transformative value. Host: Fantastic. So, to sum it up for our listeners: the promise of AI isn't just about hiring brilliant data scientists. According to this study, the key to unlocking its real value is 'democratization'. Host: This means moving through stages, from scattered experiments to a strategic, collaborative approach that empowers your business experts, data scientists, and IT teams to work as one. This not only creates more valuable solutions but also builds a scalable, cost-effective foundation for the future. Host: Alex, this has been incredibly insightful. Thank you for breaking it down for us. Expert: My pleasure, Anna. Host: And thanks to all of you for tuning into A.I.S. Insights. Join us next time as we continue to translate research into results.
Artificial Intelligence, AI Democratization, Digital Transformation, Organizational Capability, Case Study, AI Adoption, Siemens
How Shell Fueled Digital Transformation by Establishing DIY Software Development
Noel Carroll, Mary Maher
This paper presents a case study on how the international energy company Shell successfully implemented a large-scale digital transformation. It details their 'Do It Yourself' (DIY) program, which empowers employees to create their own software applications using low-code/no-code platforms. The study analyzes Shell's approach and provides recommendations for other organizations looking to leverage citizen development to drive digital initiatives.
Problem
Many organizations struggle with digital transformation, facing high failure rates and uncertainty. These initiatives often fail to engage the broader workforce, creating a bottleneck within the IT department and a disconnect from immediate business needs. This study addresses how a large, traditional company can overcome these challenges by democratizing technology and empowering its employees to become agents of change.
Outcome
- Shell successfully drove digital transformation by establishing a 'Do It Yourself' (DIY) citizen development program, empowering non-technical employees to build their own applications. - A structured four-phase process (Sensemaking, Stakeholder Participation, Collective Action, Evaluating Progress) was critical for normalizing and scaling the program across the organization. - Implementing a risk-based governance framework, the 'DIY Zoning Model', allowed Shell to balance employee autonomy and innovation with necessary security and compliance controls. - The DIY program delivered significant business value, including millions of dollars in cost savings, improved operational efficiency and safety, and increased employee engagement. - Empowering employees with low-code tools not only solved immediate business problems but also helped attract and retain new talent from the 'digital generation'.
Host: Welcome to A.I.S. Insights, the podcast where we translate complex research into actionable business intelligence. I'm your host, Anna Ivy Summers. Host: Today, we're diving into a fascinating case study about one of the world's largest energy companies. The study is titled, "How Shell Fueled Digital Transformation by Establishing DIY Software Development." Host: It details how Shell successfully empowered its own employees, many with no technical background, to create their own software applications using low-code platforms, completely changing the way they innovate. Host: With me to break it down is our analyst, Alex Ian Sutherland. Alex, welcome. Expert: Great to be here, Anna. Host: So, Alex, let's start with the big picture. Digital transformation is a buzzword we hear constantly, but the study notes that these projects have incredibly high failure rates. What’s the core problem that Shell was trying to solve? Expert: You're right, the failure rate is staggering—the study even quotes a figure of 87.5%. The core problem for many large, traditional companies is a massive bottleneck in the central IT department. Expert: Business teams on the front lines see problems that need fixing today, but their requests for a software solution can get stuck in an IT backlog for months, or even years. This creates a huge disconnect between technology and immediate business needs. Host: So IT becomes a gatekeeper instead of an enabler. Expert: Exactly. And that frustration leads to challenges like poor governance, cultural resistance, and a failure to get the wider workforce engaged in the transformation journey. Shell wanted to break that cycle. Host: How did the researchers get an inside look at how Shell did this? What was their approach? Expert: They conducted an intensive case study. This involved in-depth interviews with 18 key people at Shell, from senior executives who sponsored the program all the way to the frontline engineers and geologists who were actually building the apps. This gave them a 360-degree view of the entire process. Host: So what was the secret sauce? What did the study find was the key to Shell's success? Expert: The secret was a program they aptly named "Do It Yourself," or DIY. They essentially democratized software development by giving employees access to low-code and no-code platforms. These are tools with drag-and-drop interfaces that let people build powerful applications without needing to be a professional coder. Host: That sounds potentially chaotic for a company of over 80,000 employees. How did they manage the risk and ensure it was done effectively? Expert: That's the most critical finding. They didn't just hand out the tools and hope for the best. The study highlights two things: first, a structured four-phase process to roll out the program, focusing on building a culture of change. Expert: And second, a brilliant governance framework called the 'DIY Zoning Model'. Think of it like a traffic light. The 'Green Zone' was for low-risk, simple apps that any employee could build freely. Host: Like automating a personal spreadsheet or a team workflow? Expert: Precisely. Then there was an 'Amber Zone' for more complex apps that handled more sensitive data. For those, the employee had to partner with specialists from the IT department. And finally, a 'Red Zone' for business-critical systems, which remained firmly in the hands of professional developers. Host: That’s a very smart way to balance freedom and control. So, the structure was there, but did it deliver real value? Expert: The results were massive. The study documents millions of dollars in cost savings. For example, one app built by refinery engineers to manage pump repairs reduced downtime and aimed to cut repair time by 50%. Expert: Another app, which helps optimize furnace settings, created a potential value of up to $3 million a year at a single site. It also dramatically improved safety, efficiency, and employee engagement. Host: This is a great story about Shell, but Alex, this is the most important question: what can our listeners, who lead very different businesses, learn from this? Why does it matter for them? Expert: There are three huge takeaways. First, democratize technology. The people closest to a problem are often the best equipped to solve it. Empowering them with the right tools unburdens your IT department and delivers faster, more relevant solutions. Expert: Second, governance can be an enabler, not a blocker. The 'DIY Zoning Model' proves you don't have to choose between speed and safety. A risk-based framework allows innovation to flourish within safe boundaries. Expert: And finally, and most importantly, treat it as a cultural transformation, not a technology project. Shell succeeded because they invested in training, coaching, and building communities. They used events like hackathons to generate excitement. They understood that true transformation is about changing how people think and work together. Host: So it’s about putting the human element at the center of your digital strategy. Expert: That’s the perfect summary. Host: Fantastic insights, Alex. To recap for our listeners: Shell's success shows that empowering your employees through a well-governed citizen development program can unlock incredible value, bust through IT backlogs, and drive real cultural change. Host: Alex Ian Sutherland, thank you so much for breaking that down for us. Expert: My pleasure, Anna. Host: And thank you for tuning in to A.I.S. Insights — powered by Living Knowledge. Join us next time as we uncover more valuable lessons from the world of research.
Digital Transformation, Citizen Development, Low-Code/No-Code, Change Management, Case Study, Shell, Organizational Culture
How Large Companies Can Help Small and Medium-Sized Enterprise (SME) Suppliers Strengthen Cybersecurity
Jillian K. Kwong, Keri Pearlson
This study investigates the cybersecurity challenges faced by small and medium-sized enterprise (SME) suppliers and proposes actionable strategies for large companies to help them improve. Based on interviews with executives and cybersecurity experts, the paper identifies key barriers SMEs encounter and outlines five practical actions large firms can take to strengthen their supply chain's cyber resilience.
Problem
Large companies increasingly require their smaller suppliers to meet the same stringent cybersecurity standards they do, creating a significant burden for SMEs with limited resources. This gap creates a major security vulnerability, as attackers often target less-secure SMEs as a backdoor to access the networks of larger corporations, posing a substantial third-party risk to entire supply chains.
Outcome
- SME suppliers are often unable to meet the security standards of their large partners due to four key barriers: unfriendly regulations, organizational culture clashes, variability in cybersecurity frameworks, and misalignment of business processes. - Large companies can proactively strengthen their supply chain by providing SMEs with the resources and expertise needed to understand and comply with regulations. - Creating incentives for meeting security benchmarks is more effective than penalizing suppliers for non-compliance. - Large firms should develop programs to help SMEs elevate their cybersecurity culture and align security processes with their own. - Coordinating with other large companies to standardize cybersecurity frameworks and assessment procedures can significantly reduce the compliance burden on SMEs.
Host: Welcome to A.I.S. Insights — powered by Living Knowledge. I’m your host, Anna Ivy Summers. In today's interconnected world, your company’s security is only as strong as its weakest link. And often, that link is a small or medium-sized supplier.
Host: With me today is our analyst, Alex Ian Sutherland, to discuss a recent study titled, "How Large Companies Can Help Small and Medium-Sized Enterprise Suppliers Strengthen Cybersecurity." Alex, welcome.
Expert: Thanks for having me, Anna. This is a critical topic. The study investigates the cybersecurity challenges smaller suppliers face and, more importantly, proposes actionable strategies for large companies to help them improve.
Host: So let's start with the big problem here. Why is the gap in cybersecurity between large companies and their smaller suppliers such a major risk?
Expert: It’s a massive vulnerability. Large companies demand their smaller suppliers meet the same stringent security standards they do. But for an SME with limited staff and budget, that's often an impossible task. Attackers know this. They specifically target less-secure suppliers as a backdoor into the networks of their bigger clients.
Host: Can you give us a real-world example of that?
Expert: Absolutely. The study reminds us of the infamous 2013 data breach at Target. The hackers didn't attack Target directly at first. They got in using credentials stolen from a small, third-party HVAC vendor. That single point of entry ultimately exposed the data of over 100 million customers. It’s a classic case of the supply chain being the path of least resistance.
Host: A sobering reminder. So how did the researchers in this study approach such a complex issue?
Expert: They went straight to the source. The study is based on 27 in-depth interviews with executives, cybersecurity leaders, and supply chain managers from both large corporations and small suppliers. They gathered insights from people on the front lines who deal with these challenges every single day.
Host: And what were the biggest takeaways from those conversations? What did they find are the main barriers for these smaller companies?
Expert: The study identified four key barriers. The first is what they call "unfriendly regulation." Most cybersecurity rules are designed for big companies with legal and compliance departments. SMEs often lack the expertise to even understand them.
Host: So the rules themselves are a hurdle. What’s the second barrier?
Expert: Organizational culture clashes. For an SME, the primary focus is keeping the business running and getting products out the door. Cybersecurity can feel like a costly, time-consuming distraction, so it constantly gets pushed to the back burner.
Host: That makes sense. And the other two barriers?
Expert: Framework variability and process misalignment. Imagine being a small supplier for five different large companies, and each one asks you to comply with a slightly different security framework. One interviewee described it as "trying to navigate a sea of frameworks in a rowboat, without a map or radio." It creates a huge, confusing compliance burden.
Host: That's a powerful image. It really frames this as a partnership problem, not just a technology problem. So this brings us to the most important question for our listeners: what can businesses actually *do* about it?
Expert: This is the core of the study. It moves beyond just identifying problems to proposing five concrete actions large companies can take. First, provide your SME suppliers with the resources and expertise they lack. This could be workshops, access to your legal teams, or clear guidance on how to comply with regulations.
Host: So it's about helping, not just demanding. What’s the next action?
Expert: Create positive incentives. The study found that punishing suppliers for non-compliance is far less effective than rewarding them for meeting security benchmarks. One CTO put it perfectly: suppliers need to be rewarded for their security efforts, not just punished for failure. This changes the dynamic from a chore to a shared goal.
Host: I like that reframing. What else?
Expert: The third and fourth actions are linked. Large firms should develop programs to help SMEs elevate their security culture. And, crucially, they should coordinate with other large companies to standardize security frameworks and assessments. If competitors can agree on one common questionnaire, it saves every SME countless hours of redundant work.
Host: That seems like such a common-sense solution. What's the final recommendation?
Expert: Bring cybersecurity into the procurement process from the very beginning. Too often, security is an afterthought, brought in after a deal is already signed. This leads to delays and friction. By discussing security expectations upfront, you ensure it's a foundational part of the partnership.
Host: So, to summarize, this isn't about forcing smaller suppliers to fend for themselves. It’s about large companies taking proactive steps: providing resources, offering incentives, standardizing requirements, and making security a day-one conversation.
Expert: Exactly. The study’s main message is that strengthening your supply chain's cybersecurity is an act of partnership. When you help your suppliers become more secure, you are directly helping yourself.
Host: A powerful and practical takeaway. Alex, thank you for breaking this down for us.
Expert: My pleasure, Anna.
Host: And thanks to our audience for tuning in to A.I.S. Insights. Join us next time as we continue to explore the intersection of business, technology, and living knowledge.
Cybersecurity, Supply Chain Management, Third-Party Risk, Small and Medium-Sized Enterprises (SMEs), Cyber Resilience, Vendor Risk Management
How Boards of Directors Govern Artificial Intelligence
Benjamin van Giffen, Helmuth Ludwig
This study investigates how corporate boards of directors oversee and integrate Artificial Intelligence (AI) into their governance practices. Based on in-depth interviews with high-profile board members from diverse industries, the research identifies common challenges and provides examples of effective strategies for board-level AI governance.
Problem
Despite the transformative impact of AI on the business landscape, the majority of corporate boards struggle to understand its implications and their role in governing it. This creates a significant gap, as boards have a fiduciary responsibility to oversee strategy, risk, and investment related to critical technologies, yet AI is often not a mainstream boardroom topic.
Outcome
- Identified four key groups of board-level AI governance issues: Strategy and Firm Competitiveness, Capital Allocation, AI Risks, and Technology Competence. - Boards should ensure AI is integrated into the company's core business strategy by evaluating its impact on the competitive landscape and making it a key topic in annual strategy meetings. - Effective capital allocation involves encouraging AI experimentation, securing investments in foundational AI capabilities, and strategically considering external partnerships and acquisitions. - To manage risks, boards must engage with experts, integrate AI-specific risks into Enterprise Risk Management (ERM) frameworks, and address ethical, reputational, and legal challenges. - Enhancing technology competence requires boards to develop their own AI literacy, review board and committee composition for relevant expertise, and include AI competency in executive succession planning.
Host: Welcome to A.I.S. Insights, powered by Living Knowledge. I’m your host, Anna Ivy Summers. Today, we're diving into a critical topic for every company leader: governance. Specifically, we're looking at a fascinating new study titled "How Boards of Directors Govern Artificial Intelligence."
Host: It investigates how corporate boards oversee and integrate AI into their governance practices, based on interviews with high-profile board members. Here to break it all down for us is our analyst, Alex Ian Sutherland. Alex, welcome.
Expert: Thanks for having me, Anna.
Host: Let's start with the big picture. We hear a lot about AI's potential, but what's the real-world problem this study is trying to solve for boards?
Expert: The problem is a major governance gap. The study points out that while AI is completely reshaping the business landscape, most corporate boards are struggling to understand it. They have a fiduciary duty to oversee strategy, risk, and major investments, but AI often isn't even a mainstream topic in the boardroom.
Host: So, management might be racing ahead with AI, but the board, the ultimate oversight body, is being left behind?
Expert: Exactly. And that's risky. AI requires huge, often uncertain, capital investments. It also introduces entirely new legal, ethical, and reputational risks that many boards are simply not equipped to handle. This gap between the technology's impact and the board's understanding is what the study addresses.
Host: How did the researchers get inside the boardroom to understand this dynamic? What was their approach?
Expert: They went straight to the source. The research is based on a series of in-depth, confidential interviews with sixteen high-profile board members from a huge range of industries—from tech and finance to healthcare and manufacturing. They also spoke with executive search firms to understand what companies are looking for in new directors.
Host: So, based on those conversations, what were the key findings? What are the big themes boards need to be thinking about?
Expert: The study organized the challenges into four key groups. The first is Strategy and Firm Competitiveness. Boards need to ensure AI is actually integrated into the company’s core strategy, not just a flashy side project.
Host: Meaning they should be asking how AI will help the company win in the market?
Expert: Precisely. The second is Capital Allocation. This is about more than just signing checks. It's about encouraging experimentation—what the study calls ‘lighthouse projects’—and making strategic investments in foundational capabilities, like data platforms, that will pay off in the long run.
Host: That makes sense. What's the third group?
Expert: AI Risks. This is a big one. We're not just talking about a system crashing. Boards need to oversee ethical risks, like algorithmic bias, and major reputational and legal risks. The recommendation is to integrate these new AI-specific risks directly into the company’s existing Enterprise Risk Management framework.
Host: And the final one?
Expert: It's called Technology Competence. And this is crucial—it applies to the board itself.
Host: Does that mean every board director needs to become a data scientist?
Expert: Not at all. It’s about developing AI literacy—understanding the business implications. The study found that leading boards are actively reviewing their composition to ensure they have relevant expertise and, importantly, they're including AI competency in CEO and executive succession planning.
Host: That brings us to the most important question, Alex. For the business leaders and board members listening, why does this matter? What is the key takeaway they can apply tomorrow?
Expert: The most powerful and immediate thing a board can do is start asking the right questions. The board's role isn't necessarily to have all the answers, but to guide the conversation and ensure management is thinking through the critical issues.
Host: Can you give us an example of a question a director should be asking?
Expert: Certainly. For strategy, they could ask: "How are our competitors using AI, and how does our approach give us a competitive advantage?" On risk, they might ask: "What is our framework for evaluating the ethical risks of a new AI system before it's deployed?" These questions signal the board's priorities and drive accountability.
Host: So, the first step is simply opening the dialogue.
Expert: Yes. That's the catalyst. The study makes it clear that in many companies, if the board doesn't start the conversation on AI governance, no one will.
Host: A powerful call to action. To summarize: this study shows that boards have a critical and urgent role in governing AI. They need to focus on four key areas: weaving AI into strategy, allocating capital wisely, managing new and complex risks, and building their own technological competence.
Host: And the journey begins with asking the right questions. Alex Ian Sutherland, thank you for these fantastic insights.
Expert: My pleasure, Anna.
Host: And thank you to our audience for tuning into A.I.S. Insights. Join us next time as we continue to explore the ideas shaping business and technology.
AI governance, board of directors, corporate governance, artificial intelligence, strategic management, risk management, technology competence
Fueling Digital Transformation with Citizen Developers and Low-Code Development
Ainara Novales
Rubén Mancha
This study examines how organizations can leverage low-code development platforms and citizen developers (non-technical employees) to accelerate digital transformation. Through in-depth case studies of two early adopters, Hortilux and Volvo Group, along with interviews from seven other firms, the paper identifies key strategies and challenges. The research provides five actionable recommendations for business leaders to successfully implement low-code initiatives.
Problem
Many organizations struggle to keep pace with digital innovation due to a persistent shortage and high cost of professional software developers. This creates a significant bottleneck in application development, slowing down responsiveness to customer needs and hindering digital transformation goals. The study addresses how to overcome this resource gap by empowering business users to create their own software solutions.
Outcome
- Set a clear strategy for selecting the right use cases for low-code development, starting with simple, low-complexity tasks like process automation. - Identify, assign, and provide training to upskill tech-savvy employees into citizen developers, ensuring they have the support and guidance needed. - Establish a dedicated low-code team or department to provide organization-wide support, training, and governance for citizen development initiatives. - Ensure the low-code architecture is extendable, reusable, and up-to-date to avoid creating complex, siloed applications that are difficult to maintain. - Evaluate the technical requirements and constraints of different solutions to select the low-code platform that best fits the organization's specific needs.
Host: Welcome to A.I.S. Insights — powered by Living Knowledge. I’m your host, Anna Ivy Summers. Host: Today, we're diving into a fascinating study titled, "Fueling Digital Transformation with Citizen Developers and Low-Code Development." Host: In essence, it explores how companies can use so-called 'citizen developers'—that is, non-technical employees—to build software and accelerate innovation using simple, low-code platforms. Host: To help us unpack this, we have our expert analyst, Alex Ian Sutherland. Welcome, Alex. Expert: Great to be here, Anna. Host: Alex, let's start with the big picture. What’s the core business problem this study is trying to solve? Expert: The problem is one that nearly every business leader will recognize: the IT bottleneck. Expert: Companies need to innovate digitally to stay competitive, but there's a huge shortage of professional software developers. They're expensive and in high demand. Host: So this creates a long queue for the IT department, and business projects get delayed. Expert: Exactly. This study highlights that the software development bottleneck slows down everything, from responding to customer needs to achieving major digital transformation goals. Businesses are realizing they can't just rely on their central IT department to build every single application they need. Host: It’s a resource gap. So, how did the researchers investigate this? What was their approach? Expert: They took a very practical, real-world approach. They conducted in-depth case studies on two companies that were early adopters of low-code: Hortilux, a provider of lighting solutions for greenhouses, and the Volvo Group. Expert: They also interviewed executives from seven other firms across different industries to understand the strategies, challenges, and what actually works in practice. Host: So, by looking at these pioneers, what key findings or recommendations emerged? Expert: One of the most critical findings was the need for a clear strategy. The successful companies didn't try to boil the ocean. Host: What does that mean in this context? Expert: It means they started small. They strategically selected simple, low-complexity tasks for their first low-code projects, like automating internal processes. This builds momentum and demonstrates value without high risk. Host: That makes sense. And what about the people side of things? This idea of a 'citizen developer' is central here. Expert: Absolutely. A key recommendation is to actively identify tech-savvy employees within business departments—people in HR, finance, or marketing who are good with technology but aren't coders. Expert: The Volvo Group case is a perfect example. They began by upskilling employees in their HR department. These employees, who understood the HR processes inside and out, were trained to build their own simple applications to automate their work. Host: But you can't just hand them the tools and walk away, I assume. Expert: No, and that's the third major finding. You need to establish a dedicated low-code support team. Volvo created a central team within IT that was exclusively focused on supporting these citizen developers across the entire company. They provide training, set guidelines for security and privacy, and act as a center of excellence. Host: This sounds like a powerful way to democratize development. So, Alex, for the business leaders listening, why does this really matter? What are the key takeaways for them? Expert: I think there are three big takeaways. First, it’s about speed and agility. By empowering business units to build their own solutions for smaller problems, you break that IT bottleneck we talked about. The business can react faster to its own needs. Host: It frees up the professional developers to work on the more complex, mission-critical systems. Expert: Precisely. The second takeaway is about innovation. The people closest to a business problem are often the best equipped to solve it. Low-code gives them the tools to do so. This unlocks a huge potential for ground-up innovation that would otherwise be stuck in an IT request queue. Expert: And finally, it's a powerful tool for talent development. The study showed how employees at Volvo who started as citizen developers in HR created entirely new career paths for themselves, some even becoming professional low-code developers. It’s a way to upskill and retain your best people in an increasingly digital world. Host: Fantastic. So, to summarize: start with a clear, focused strategy on small-scale projects, identify and empower your own employees to become citizen developers, and crucially, back them up with a dedicated support structure. Host: The result isn't just faster application development, but a more innovative and agile organization. Alex, thank you so much for breaking that down for us. Expert: It was my pleasure, Anna. Host: And a big thank you to our listeners for tuning into A.I.S. Insights. Join us next time as we continue to explore more research from the world of Living Knowledge.
low-code development, citizen developers, digital transformation, IT strategy, application development, software development bottleneck, case study
F. Warren McFarlan's Pioneering Role in Impacting IT Management Through Academic Research
Blake Ives, Mary Lacity, Jeanne Ross
This article chronicles the distinguished career of F. Warren McFarlan, a seminal figure in the field of IT management. Based on interviews with McFarlan and his colleagues, as well as archival material, the paper details his immense contribution to bridging the divide between academic research and practical IT management. It highlights his methods, influential frameworks, and enduring legacy in educating generations of IT practitioners and researchers.
Problem
There is often a significant gap between academic research and the practical needs of business managers. Academics typically focus on theory and description, while business leaders require actionable, prescriptive insights. This paper addresses this challenge by examining the career of F. Warren McFarlan as a case study in how to successfully produce practice-based research that is valuable to both the academic and business communities.
Outcome
- F. Warren McFarlan was a foundational figure who played a pioneering role in establishing IT management as a respected academic and business discipline. - He effectively bridged the gap between academia and industry by developing practical frameworks and using the case study method to teach senior executives how to manage technology strategically. - Through his extensive body of research, including over 300 cases and numerous influential articles, he provided managers with accessible tools to assess IT project risk and align technology with business strategy. - McFarlan was instrumental in championing academic outlets for practice-based research, notably serving as editor-in-chief of MIS Quarterly during a critical period to ensure its survival and relevance. - His legacy includes not only his own research but also his mentorship of junior faculty and his role in building the IT management program at Harvard Business School.
Host: Welcome to A.I.S. Insights, the podcast at the intersection of business and technology, powered by Living Knowledge. I’m your host, Anna Ivy Summers. Host: Today, we're diving into a fascinating study titled "F. Warren McFarlan's Pioneering Role in Impacting IT Management Through Academic Research." Host: It chronicles the career of a key figure who helped bridge the often-vast divide between academic theory and the real-world practice of managing technology in business. With me is our analyst, Alex Ian Sutherland. Alex, welcome. Expert: Great to be here, Anna. Host: So Alex, let’s start with the big picture. This study seems to be about more than just one person's career. It highlights a fundamental challenge in business, doesn't it? Expert: Absolutely. The core problem is a persistent gap between the world of academic research and the day-to-day needs of business managers. Academics often focus on developing theory, while leaders on the ground need actionable, practical advice. Host: They’re speaking different languages, in a way. Expert: Exactly. And this was especially true in the early days of IT in the 1960s. The study points out that when computers started entering the business world, managers had to find experts who didn't really exist yet. So they turned to business schools, but even there, IT management wasn't a respected discipline. It was a completely new frontier. Host: So how did the researchers go about studying McFarlan’s career to understand how he navigated that new frontier? Expert: The approach was biographical and historical. The authors conducted extensive interviews with McFarlan himself, as well as his colleagues and former students. They also dug into the Harvard Business School archives to piece together how he built his methods and his influence over several decades. Host: And what did they find? What were the keys to his success in bridging that gap? Expert: The study points to a few critical things. First, he was truly a pioneer. He helped establish IT management as a legitimate field of study at a time when many of his own colleagues were skeptical. Host: But it was his method that was really revolutionary, right? Expert: Yes, and that's the second key finding. He relied heavily on the case study method. He developed an archive of over 300 cases, which were essentially detailed stories of how real companies were struggling with and succeeding with technology. Host: So he wasn't teaching abstract theory, he was teaching through real-world examples. Expert: Precisely. This led to his third major contribution: creating simple, powerful frameworks that managers could actually use. These frameworks didn't require an engineering degree or knowledge of "bits and bytes." They provided a language for executives to talk about technology strategy. Host: Can you give us an example of one of these frameworks? Expert: One of the most famous was a grid for assessing IT project risk. It looked at three simple criteria: the project size, its structure, and the novelty of the technology. This allowed a CEO, not just the IT manager, to understand the risk profile of their entire tech portfolio and manage it accordingly. Host: That sounds incredibly practical. So, Alex, this is a great historical look at a foundational figure. But for a business leader listening to us right now, why does Warren McFarlan’s approach still matter in the age of AI and cloud computing? Expert: It matters more than ever, Anna. The first big takeaway is the critical need for ‘translators.’ McFarlan’s genius was translating complex technology into the language of business risk, strategy, and value. Every company today needs leaders who can do the same for AI, cybersecurity, or data analytics. Host: So it's about bridging that communication gap within the organization. Expert: Yes. The second takeaway is about strategic alignment. McFarlan created a framework called the "strategic grid" that forced executives to ask if their IT was just a "Factory" or "Support" function, or if it was truly "Strategic." Businesses today must constantly ask that same question. Is your tech a cost center, or is it a source of competitive advantage? Host: A question that is certainly top-of-mind for many boards. What else? Expert: The power of storytelling. McFarlan didn't just present data; he used case studies about real companies—from American Airlines to a then-tiny startup called Alibaba—to teach lessons. For any leader trying to drive change, using concrete examples of what works and what doesn't is far more powerful than just theory. Host: It makes the abstract tangible. Expert: Exactly. And the final, and perhaps most important lesson, is that senior leaders cannot afford to be technologically illiterate. The study quotes McFarlan telling a room of senior executives, "Twenty years ago, you were illiterate in IT and they knew it. Today, you're still illiterate, but you don't know it!" That warning is just as urgent today. You can't delegate the understanding of technology's strategic impact. Host: A powerful and timeless message. So, to sum it up: businesses need leaders who can act as translators, who relentlessly align technology with strategy, and who understand that tech literacy starts at the top. Expert: That's the enduring legacy this study highlights. His methods for making technology understandable and manageable are just as relevant today as they were 50 years ago. Host: Alex, thank you for bringing this research to life and sharing these actionable insights. Expert: My pleasure, Anna. Host: And thanks to all of you for tuning in to A.I.S. Insights, powered by Living Knowledge. Join us next time as we explore the latest research impacting business and technology.
F. Warren McFarlan, IT Management, Practice-Based Research, Academic-Practitioner Gap, Case Study Research, Harvard Business School, Strategic IT
Experiences and Lessons Learned at a Small and Medium-Sized Enterprise (SME) Following Two Ransomware Attacks
Donald Wynn, Jr., W. David Salisbury, Mark Winemiller
This paper presents a case study of a small U.S. manufacturing company that suffered two distinct ransomware attacks four years apart, despite strengthening its cybersecurity after the first incident. The study analyzes both attacks, the company's response, and the lessons learned from the experiences. The goal is to provide actionable recommendations to help other small and medium-sized enterprises (SMEs) improve their defenses and recovery strategies against evolving cyber threats.
Problem
Small and medium-sized enterprises (SMEs) face unique cybersecurity challenges due to significant resource constraints compared to larger corporations. They often lack the financial capacity, specialized expertise, and trained workforce to implement and maintain adequate technical and procedural controls. This vulnerability is increasingly exploited by cybercriminals, with a high percentage of ransomware attacks specifically targeting these smaller, less-defended businesses.
Outcome
- All businesses are targets: The belief in 'security by obscurity' is a dangerous misconception; any online presence makes a business a potential target for cyberattacks. - Comprehensive backups are essential: Backups must include not only data but also system configurations and software to enable a full and timely recovery. - Management buy-in is critical: Senior leadership must understand the importance of cybersecurity and provide the necessary funding and organizational support for robust defense measures. - People are a key vulnerability: Technical defenses can be bypassed by human error, as demonstrated by the second attack which originated from a phishing email, underscoring the need for continuous employee training. - Cybercrime is an evolving 'arms race': Attackers are becoming increasingly sophisticated, professional, and organized, requiring businesses to continually adapt and strengthen their defenses.
Host: Welcome to A.I.S. Insights — powered by Living Knowledge. I'm your host, Anna Ivy Summers. Today we're diving into a story that serves as a powerful warning for any business operating online. We're looking at a study titled, "Experiences and Lessons Learned at a Small and Medium-Sized Enterprise (SME) Following Two Ransomware Attacks".
Host: With me is our analyst, Alex Ian Sutherland. Alex, this study follows a small U.S. manufacturing company that was hit by ransomware not once, but twice, despite strengthening its security after the first incident. It’s a real-world look at how businesses can defend and recover from these evolving threats.
Expert: It is, Anna. And it's a critical topic.
Host: So, let's start with the big problem. We often hear about massive corporations getting hacked. Why does this study focus on smaller businesses?
Expert: Because they are the primary target. SMEs face unique challenges due to resource constraints. They often lack the financial capacity or specialized staff to build robust cyber defenses. The study points out that a huge percentage of ransomware attacks—over 80% in some reports—are aimed specifically at these smaller, less-defended companies. Cybercriminals see them as easy targets.
Host: To explore this, what approach did the researchers take?
Expert: They conducted an in-depth case study of one company. By focusing on this single manufacturing firm, they could analyze the two attacks in detail—one in 2017 and a second, more advanced attack in 2021. They documented the company's response, the financial and operational impact, and the critical lessons learned from both experiences.
Host: Getting hit twice provides a unique perspective. What was the first major finding from this?
Expert: The first and most fundamental finding was that all businesses are targets. Before the 2017 attack, the company’s management believed in 'security by obscurity'—they thought they were too small and not in a high-value industry like finance to be of interest. That was a costly mistake.
Host: A wake-up call, for sure. After that first attack, they tried to recover. What did they learn from that process?
Expert: They learned that comprehensive backups are absolutely essential. They had backups of their data, but not their system configurations or software. This meant recovery was a slow, painful process of rebuilding servers from scratch, leading to almost two weeks of downtime for critical systems.
Host: That kind of downtime could kill a small business. You mentioned management's mindset was a problem initially. Did that change?
Expert: It changed overnight. The third finding is that management buy-in is critical. The IT director had struggled to get funding for security before the attack. Afterwards, the threat became real. He was promoted to Vice President, and the study quotes him saying, “Finding cybersecurity dollars was no longer difficult.”
Host: So with new funding and better technology, they were prepared. But they still got hit a second time. How did that happen?
Expert: This highlights the fourth key finding: people are a key vulnerability. The second, more sophisticated attack in 2021 didn't break through a firewall; it walked in the front door through a phishing email that a single employee clicked. It proved that technology alone isn't enough.
Host: It's a classic problem. And what did that second attack reveal about the attackers themselves?
Expert: It showed that cybercrime is an evolving 'arms race'. The first attack was relatively crude. The second was from a highly professional ransomware group called REvil, which operates like a criminal franchise. They used a 'double extortion' tactic—not just encrypting the company's data, but also stealing it and threatening to release sensitive HR files publicly.
Host: That's terrifying. So, Alex, this is the most important question for our listeners. What are the practical takeaways? Why does this matter for their business?
Expert: There are four key actions every business leader should take. First, accept that you are a target, no matter your size or industry. Budget for cybersecurity proactively, don't wait for a disaster.
Expert: Second, ensure your backups are truly comprehensive and test your disaster recovery plan. You need to be able to restore entire systems, not just data, and you need to know that it actually works.
Expert: Third, invest in your people. Continuous security awareness training is not optional; it’s one of your most effective defenses against threats like phishing that target human error.
Expert: And finally, build relationships with external experts *before* you need them. For the second attack, the company had an incident response firm on retainer. Having experts to call immediately made a massive difference. You don’t want to be looking for help in the middle of a crisis.
Host: Powerful advice. To summarize: assume you're a target, build and test a full recovery plan, train your team relentlessly, and have experts on speed dial. This isn't just a technology problem; it's a business continuity problem.
Host: Alex Ian Sutherland, thank you for sharing these critical insights with us.
Expert: My pleasure, Anna.
Host: And thank you for tuning into A.I.S. Insights, powered by Living Knowledge. Join us next time as we translate academic research into actionable business strategy.
ransomware, cybersecurity, SME, case study, incident response, cyber attack, information security
Evolution of the Metaverse
Mary Lacity, Jeffrey K. Mullins, Le Kuai
This paper explores the potential opportunities and risks of the emerging metaverse for business and society through an interview format with leading researchers. The study analyzes the current state of metaverse technologies, their potential business applications, and critical considerations for governance and ethical implementation for IT practitioners.
Problem
Following renewed corporate interest and massive investment, the concept of the metaverse has generated significant hype, but businesses lack clarity on its definition, tangible value, and long-term impact. This creates uncertainty for leaders about how to approach the technology, differentiate it from past virtual worlds, and navigate the significant risks of surveillance, data privacy, and governance.
Outcome
- The business value of the metaverse centers on providing richer, safer experiences for customers and employees, reducing costs, and meeting organizational goals through applications like immersive training, virtual collaboration, and digital twins. - Companies face a critical choice between centralized 'Web 2' platforms, which monetize user data, and decentralized 'Web 3' models that offer users more control over their digital assets and identity. - The metaverse can improve employee onboarding, training for dangerous tasks, and collaboration, offering a greater sense of presence than traditional videoconferencing. - Key challenges include the lack of a single, interoperable metaverse (which is likely over a decade away), limited current capabilities of decentralized platforms, and the potential for negative consequences like addiction and surveillance. - Businesses are encouraged to explore potential use cases, participate in creating open standards, and consider both the immense promise and potential perils before making significant investments.
Host: Welcome to A.I.S. Insights, the podcast where we connect business leaders with the latest in academic research. I’m your host, Anna Ivy Summers. Host: Today, we’re diving into a topic surrounded by enormous hype and investment: the metaverse. We’ll be exploring a fascinating new study titled “Evolution of the Metaverse.” Host: This study analyzes the current state of metaverse technologies, their potential business applications, and the critical ethical considerations for IT practitioners. To help us unpack it all, we have our expert analyst, Alex Ian Sutherland. Welcome, Alex. Expert: Great to be here, Anna. Host: Alex, the term 'metaverse' is everywhere, and companies are pouring billions into it. But for many business leaders, it's still a very fuzzy concept. What’s the core problem this study addresses? Expert: You've hit on it exactly. There’s a huge gap between the hype and the reality. Business leaders are struggling with a lack of clarity. They’re asking: What is the metaverse, really? How is it different from the virtual worlds of the past, like Second Life? And most importantly, what is its tangible value? Expert: This uncertainty creates real risk. Without a clear framework, it’s hard to know how to invest, or how to navigate the significant dangers the study points out, like intense user surveillance and data privacy issues. One of the researchers even described the worst-case scenario as "surveillance capitalism on steroids." Host: That’s a powerful warning. So how did the researchers approach such a broad and complex topic? Expert: Instead of a traditional lab experiment, this study is structured as a deep conversation with a team of leading academics who have been researching this space for years. They synthesized their different perspectives—from optimistic to cautious—to create a balanced view of the opportunities, risks, and the future trajectory of these technologies. Host: That’s a great approach for a topic that’s still evolving. Let's get into what they found. What did the study identify as the real business value of the metaverse today? Expert: The value isn't in some far-off sci-fi future; it's in practical applications that provide richer, safer experiences. Think of things like creating a 'digital twin' of a factory. The study mentions an auto manufacturer that did this to plan a model changeover virtually, saving massive costs by not having to shut down the physical assembly line for trial and error. Host: So it's about simulation and planning. What about for employees? Expert: Absolutely. The study highlights immersive training as a key benefit. For example, Accenture onboarded 150,000 new employees in a virtual world, creating a stronger sense of presence and connection than a standard video call. It’s also invaluable for training on dangerous tasks, like handling hazardous materials, where mistakes in a virtual setting have no real-world consequences. Host: The study also mentions a critical choice companies are facing between two different models for the metaverse. Can you break that down for us? Expert: Yes, and this is crucial. The choice is between a centralized 'Web 2' model and a decentralized 'Web 3' model. The Web 2 version, led by companies like Meta, is a closed ecosystem. The platform owner controls everything and typically monetizes user data. Expert: The Web 3 model, built on technologies like blockchain, is about user ownership. In this version, users would control their own digital identity and assets, and could move them between different virtual worlds. The challenge, as the study notes, is that these Web 3 platforms are far less developed right now. Host: Which brings us to the big question for business leaders listening: what does this all mean for them? What are the key takeaways? Expert: The first takeaway is to start exploring, but with a clear purpose. Don't build a metaverse presence just for the sake of it. Instead, identify a specific business problem that could be solved with immersive technology, like improving employee safety or reducing prototyping costs. Host: So, focus on practical use cases, not just marketing. Expert: Exactly. Second, businesses should consider participating in the creation of open standards. The study suggests that a single, interoperable metaverse is likely more than a decade away. Getting involved now gives companies a voice in shaping the future and ensuring it isn't dominated by just one or two tech giants. Expert: And finally, leaders must weigh the promise against the perils. They need to understand the governance model they’re buying into. For internal training, a centralized platform—what the study calls an "intraverse"—might be perfectly fine. But for customer-facing applications, the questions of data ownership and privacy become paramount. Host: This has been incredibly insightful, Alex. It seems the message is to approach the metaverse not as a single, flashy destination, but as a set of powerful tools that require careful, strategic implementation. Host: To summarize for our listeners: the business value of the metaverse is in specific, practical applications like immersive training and digital twins. Leaders face a critical choice between closed, company-controlled platforms and open, user-centric models. The best path forward is to explore potential use cases cautiously and participate in building an open future. Host: Alex Ian Sutherland, thank you so much for breaking down this complex topic for us. Expert: My pleasure, Anna. Host: And a big thank you to our audience for tuning in to A.I.S. Insights. We’ll see you next time.
Metaverse, Virtual Worlds, Augmented Reality, Web 3.0, Digital Twin, Business Strategy, Governance
Boundary Management Strategies for Leading Digital Transformation in Smart Cities
Jocelyn Cranefield, Jan Pries-Heje
This study investigates the leadership challenges inherent in smart city digital transformations. Based on in-depth interviews with leaders from 12 cities, the research identifies common obstacles and describes three 'boundary management' strategies leaders use to overcome them and drive sustainable change.
Problem
Cities struggle to scale up smart city initiatives beyond the pilot stage because of a fundamental conflict between traditional, siloed city bureaucracy and the integrated, data-driven logic of a smart city. This clash creates significant organizational, political, and cultural barriers that impede progress and prevent the realization of long-term benefits for citizens.
Outcome
- Identifies eight key challenges for smart city leaders, including misalignment of municipal structures, restrictive data policies, resistance to innovation, and city politics. - Finds that successful smart city leaders act as expert 'boundary spanners,' navigating the divide between the traditional institutional logic of city governance and the emerging logic of smart cities. - Proposes a framework of three boundary management strategies leaders use: 1) Boundary Bridging to generate buy-in and knowledge, 2) Boundary Buffering to protect projects from resistance, and 3) Boundary Building to create new, sustainable governance structures.
Host: Welcome to A.I.S. Insights — powered by Living Knowledge. I’m your host, Anna Ivy Summers. Host: Today, we're diving into the complex world of smart cities. We're looking at a fascinating study titled "Boundary Management Strategies for Leading Digital Transformation in Smart Cities." Host: In essence, the study investigates the huge leadership challenges that come with making a city 'smart'. It identifies the common roadblocks and lays out three specific strategies leaders can use to drive real, sustainable change. Host: To help us unpack this, we have our expert analyst, Alex Ian Sutherland. Alex, welcome back to the show. Expert: Great to be here, Anna. Host: So, Alex, smart cities sound like a great idea – using technology to improve transport, energy, and services for citizens. What’s the big problem here? Why do so many of these initiatives stall? Expert: That's the core question the study addresses. The problem isn't the technology itself; it's a fundamental clash of cultures. Host: A culture clash? Between what? Expert: Between the old and the new. On one hand, you have the traditional logic of a city bureaucracy. It's built on stability, risk reduction, and very distinct, separate departments, or silos. The transport department has its budget, the waste management department has theirs, and they rarely intersect. Host: The classic "that's not my department" issue. Expert: Exactly. But on the other hand, the new 'smart city' logic is all about integration, agility, and using data across those silos to make better decisions. The study gives a great example: a smart streetlamp. It’s not just a light anymore. It might have a charging station for electric cars, a public Wi-Fi hotspot, and a camera for public safety. Host: And I can see the problem. Whose budget does that come from? Lighting? Transport? IT? Public safety? Expert: Precisely. The old structure isn't designed to handle an integrated project like that. This clash creates massive organizational and political barriers that stop promising pilot projects from ever scaling up. Host: So how did the researchers get behind the scenes to understand this clash so well? Expert: They went straight to the source. The study is based on in-depth interviews with 18 leaders who were right in the thick of it—people like CIOs, program managers, innovation leads, and even a city mayor. Host: And this wasn't just one city, was it? Expert: No, they covered 12 different cities across Europe, North America, and the Pacific. This gave them a really robust, international view of the common challenges leaders were facing everywhere. Host: Which brings us to the findings. What were the big takeaways from those conversations? Expert: The study first identified eight key challenges. Things we've touched on, like the misaligned municipal structures, but also restrictive data policies where data is locked away by one department or a private vendor, and a deep-seated resistance to innovation in a culture that's built to be risk-averse. Host: It sounds like these leaders are caught between two worlds. Expert: That's the second key finding. Successful leaders in this space act as expert 'boundary spanners'. They spend their days navigating the divide between that traditional city logic and the emerging smart city logic. They have to speak both languages. Host: And that leads to the main framework of the study: the three specific strategies these 'boundary spanners' use. Can you walk us through them? Expert: Of course. The first is Boundary Bridging. This is all about connection. It's building coalitions, getting buy-in from different department heads, finding champions for your project, and translating technical ideas into real-world benefits that a politician or a citizen can understand. Host: So, building bridges across the silos. What's the second one? Expert: The second is Boundary Buffering. This is more of a defensive strategy. It’s about protecting a fragile, innovative project from the slow, resistant bureaucracy. It might mean finding a creative workaround for a procurement rule or shouldering the risk of a pilot project so another department manager doesn't have to. It's about creating a safe space for the project to survive. Host: And the third strategy? Expert: That's Boundary Building. This is the long-term play. After you've bridged and buffered, you start creating new, permanent structures. You build a new framework. This could mean writing new data-sharing policies for the entire city, creating a dedicated innovation unit, or setting new standards for technology vendors. It’s about making the new way of working the official way. Host: This is an incredibly useful framework for city leaders. But our audience is mostly in the private sector. Why does this matter for a business leader trying to drive digital transformation in their own company? Expert: It matters immensely, because this isn't just a smart city problem; it's a universal business problem. Any large, established company faces the exact same clash between its legacy structures and the demands of digital transformation. Host: So the city is just a metaphor for any big organization. Expert: Absolutely. The study's key lesson is that transformation isn't just about buying new software. It’s about actively managing that cultural boundary between the old and the new. Business leaders need to find their own 'boundary spanners'—the people who can connect IT with marketing, or R&D with sales. Host: And the three strategies—Bridging, Buffering, and Building—give them a practical toolkit. Expert: It's a perfect toolkit. Is your project stuck because departments aren't talking? Use Bridging. Is the finance team's outdated process killing your momentum? Use Buffering to protect your team. Did your project succeed? Use Building to make your new process the company-wide standard. It’s a roadmap for turning a pilot project into a systemic change. Host: A roadmap for real change. That’s a powerful takeaway. So to summarize, driving any major digital transformation means recognizing the clash between old silos and new integrated approaches. Host: And successful leaders must act as 'boundary spanners,' using three key strategies: Bridging to connect, Buffering to protect, and Building to create new, lasting structures. Host: Alex, this has been incredibly insightful. Thank you for breaking it down for us. Expert: My pleasure, Anna. Host: And thank you for tuning in to A.I.S. Insights — powered by Living Knowledge. Join us next time as we continue to explore the ideas shaping our world.
This study investigates the need for flexibility and speed in creating and updating cybersecurity rules within organizations. Through in-depth interviews with cybersecurity professionals, the research identifies key areas of digital risk and provides practical recommendations for businesses to develop more agile and adaptive security policies.
Problem
In the face of rapidly evolving cyber threats, many organizations rely on static, outdated cybersecurity policies that are only updated after a security breach occurs. This reactive approach leaves them vulnerable to new attack methods, risks from new technologies, and threats from business partners, creating a significant security gap.
Outcome
- Update cybersecurity policies to address risks from outdated legacy systems by implementing modern digital asset and vulnerability management. - Adapt policies to address emerging technologies like AI by enhancing technology scouting and establishing a resilient cyber risk management framework. - Strengthen policies for third-party vendors by conducting agile risk assessments and regularly reviewing security controls in contracts. - Build flexible policies for disruptive external events (like pandemics or geopolitical tensions) through continuous employee training and robust business continuity plans.
Host: Welcome to A.I.S. Insights, powered by Living Knowledge. I’m your host, Anna Ivy Summers. Today, we're diving into a study that tackles a critical issue for every modern business: cybersecurity. The study is titled, "Adopt Agile Cybersecurity Policymaking to Counter Emerging Digital Risks".
Host: It explores the urgent need for more speed and flexibility in how organizations create and update their security rules. We’re joined by our expert analyst, Alex Ian Sutherland, to break it down for us. Alex, welcome.
Expert: Thanks for having me, Anna.
Host: Let's start with the big picture. Why is this topic so important right now? What's the problem this study is addressing?
Expert: The core problem is that many businesses are trying to fight tomorrow's cyber threats with yesterday's rulebook. They often rely on static, outdated cybersecurity policies.
Host: What do you mean by static?
Expert: It means the policies are written once and then left on a shelf. They’re often only updated after the company suffers a major security breach. This reactive approach leaves them completely exposed to new attack methods, risks from new technology like AI, and even threats coming from their own business partners. It creates a massive security gap.
Host: So businesses are always one step behind. How did the researchers investigate this? What was their approach?
Expert: They went directly to the front lines. The study is based on in-depth interviews with nine senior cybersecurity leaders—people like Chief Information Security Officers and CTOs from a range of industries, including finance, technology, and telecommunications. They wanted to understand the real-world pressures and challenges these leaders face in keeping their policies effective.
Host: And what were the key findings? What are the biggest risks that demand this new, agile approach?
Expert: The study pinpointed four primary risk areas. The first is internal: outdated legacy systems. These are old software or hardware that are critical to the business but can't be easily updated to defend against modern threats.
Host: And the other three?
Expert: The other three are external. The second is the rapid pace of emerging technologies. For instance, one expert described how hackers can now use AI to clone a manager’s voice, call an employee, and trick them into revealing a password. An old policy manual won't have a procedure for that.
Host: That's terrifying. What's the third risk area?
Expert: Attacks via third parties, which is a huge one. Hackers don't attack you directly; they attack your software supplier or a contractor who has access to your systems. This is often called a supply chain attack.
Host: And the final one?
Expert: The fourth risk is disruptive external events. Think about the COVID-19 pandemic. Suddenly, everyone had to work from home, often on personal devices connecting to the company network. This required a massive, immediate change in security policy that most organizations were not prepared for.
Host: That really puts it into perspective. So, Alex, this brings us to the most important question for our listeners: why does this matter for their business, and what can they do about it?
Expert: This is the critical takeaway. The study provides a clear roadmap. It’s about shifting from a passive, 'set-it-and-forget-it' mentality to an active, continuous cycle of security improvement.
Host: Can you give us some concrete actions?
Expert: Certainly. For legacy systems, the study recommends implementing modern digital asset management. You must know what systems you have, what data they hold, and how vulnerable they are. For emerging tech like AI, it’s about proactive 'technology scouting' to anticipate new threats and having a resilient risk management framework to assess them quickly.
Host: What about those third-party risks?
Expert: Here, the study emphasizes strengthening vendor risk management. One interviewee told a story about their company losing its entire code base because a password manager they used was hacked. The lesson was clear: you need to conduct agile risk assessments of your suppliers and build clear security controls directly into your contracts. Don't just trust; verify.
Host: And for preparing for those big, disruptive events?
Expert: It comes down to two things: continuous employee training and robust business continuity plans that are tested regularly. When a crisis hits, your people need to know the procedures, and your policies need to be flexible enough to adapt without compromising security.
Host: This has been incredibly insightful. So, to sum it up, the old way of writing a security policy once every few years is no longer enough. Businesses need to treat cybersecurity policy as a living document.
Expert: Exactly. It needs to be agile and adaptive, constantly evolving to meet new threats head-on.
Host: That’s a powerful message for every leader. Alex Ian Sutherland, thank you so much for breaking down this crucial study for us.
Expert: My pleasure, Anna.
Host: And thank you to our audience for tuning into A.I.S. Insights, powered by Living Knowledge. Join us next time as we translate another key piece of research into actionable business intelligence.
agile cybersecurity, cybersecurity policymaking, digital risk, adaptive security, risk management, third-party risk, legacy systems
Promoting Cybersecurity Information Sharing Across the Extended Value Chain
Olga Biedova, Lakshmi Goel, Justin Zhang, Steven A. Williamson, Blake Ives
This study analyzes an alternative cybersecurity information-sharing forum centered on the extended value chain of a single company in the forest and paper products industry. The paper explores the forum's design, execution, and challenges to provide recommendations for similar company-specific collaborations. The goal is to enhance cybersecurity resilience across interconnected business partners by fostering a more trusting and relevant environment for sharing best practices.
Problem
As cyberthreats become more complex, industries with interconnected information and operational technologies (IT/OT) face significant vulnerabilities. Despite government and industry calls for greater collaboration, inter-organizational cybersecurity information sharing remains sporadic due to concerns over confidentiality, competitiveness, and lack of trust. Standard sector-based sharing initiatives can also be too broad to address the specific needs of a company and its unique value chain partners.
Outcome
- A company-led, value-chain-specific cybersecurity forum is an effective alternative to broader industry groups, fostering greater trust and more relevant discussions among business partners. - Key success factors for such a forum include inviting the right participants (security strategy leaders), establishing clear ground rules to encourage open dialogue, and using external facilitators to ensure neutrality. - The forum successfully shifted the culture from one of distrust to one of transparency and collaboration, leading participants to be more open about sharing experiences, including previous security breaches. - Participants gained valuable insights into the security maturity of their partners, leading to tangible improvements in cybersecurity practices, such as updating security playbooks, adopting new risk metrics, and enhancing third-party risk management. - The collaborative model strengthens the entire value chain, as companies learn from each other's strategies, tools, and policies to collectively improve their defense against common threats.
Host: Welcome to A.I.S. Insights, powered by Living Knowledge, where we translate complex research into actionable business strategy. I’m your host, Anna Ivy Summers.
Host: Today, we’re talking about a challenge that keeps leaders up at night: cybersecurity. We’ll be discussing a fascinating study titled "Promoting Cybersecurity Information Sharing Across the Extended Value Chain."
Host: It explores a new model for cybersecurity collaboration, one centered not on an entire industry, but on the specific value chain of a single company, aiming to build a more trusting and effective defense against cyber threats.
Host: And to help us unpack this is our analyst, Alex Ian Sutherland. Welcome, Alex.
Expert: Great to be here, Anna.
Host: Alex, we all know cybersecurity is important, but collaboration between companies has always been tricky. What’s the big problem this study is trying to solve?
Expert: The core problem is trust. As cyber threats get more complex, especially in industries that blend physical machinery with digital networks, the risks are huge. Think of manufacturing or logistics.
Expert: Government and industry groups have called for companies to share threat information, but it rarely happens. Businesses are worried about confidentiality, losing a competitive edge, or legal repercussions if they admit to a vulnerability or a breach.
Host: So everyone is guarding their own castle, even though the attackers are collaborating and sharing information freely.
Expert: Exactly. And the study points out that even when companies join traditional sector-wide sharing groups, the information can be too broad to be useful. The threats facing a specific paper company and its logistics partner are very different from the threats facing an automotive manufacturer in the same general group.
Host: So this study looked at a different model. How did the researchers approach this?
Expert: They facilitated and analyzed a real-world forum initiated by a single large company in the forest and paper products industry. This company, which the study calls 'Company A', invited its own key partners—suppliers, distributors, and customers—to form a private, focused group.
Expert: They also brought in neutral university researchers to facilitate the discussions. This was crucial. It ensured that the organizing company was seen as an equal participant, not a dominant force, which helped build a safe environment for open dialogue.
Host: A private club for cybersecurity, but with your own business partners. I can see how that would build trust. What were some of the key findings?
Expert: The biggest finding was that this model works incredibly well. It created a level of trust and relevance that broader forums just can't match. The conversations became much more transparent and collaborative.
Host: Can you give us an example of that transparency in action?
Expert: Absolutely. One of the most powerful moments was when a company that had previously suffered a major ransomware attack openly shared its story—the details of the breach, the recovery process, and the lessons learned. That kind of first-hand account is invaluable and only happens in a high-trust environment. It moved the conversation beyond theory into real, shared experience.
Host: That’s incredibly powerful. So this open dialogue actually led to concrete improvements?
Expert: Yes, that’s the critical outcome. Participants started seeing the security maturity of their partners, for better or worse. This led to tangible changes. For instance, the organizing company completely revised its cybersecurity playbook based on new risk metrics discussed in the forum. Others updated their third-party risk management and adopted new tools shared by the group.
Host: This is the most important part for our listeners, Alex. What does this all mean for business leaders, regardless of their industry? What’s the key takeaway?
Expert: The biggest takeaway is that your company’s security is only as strong as the weakest link in your value chain. You can have the best defenses in the world, but if a key supplier gets breached, your operations can grind to a halt. This model strengthens the entire ecosystem.
Host: So it’s about taking ownership of your immediate business environment, not just your own four walls.
Expert: Precisely. You don’t need to wait for a massive industry initiative. As a business leader, you can be the catalyst. This study shows that an invitation from a key business partner is very likely to be accepted. You have the power to convene your critical partners and start this conversation.
Host: What would you say is a practical first step for a leader who wants to try this?
Expert: Start by identifying your most critical partners—those you share sensitive data or network connections with. Then, frame the conversation around shared risk and mutual benefit. The goal isn't to point fingers; it's to learn from each other's strategies, policies, and tools to collectively raise your defenses against common threats.
Host: Fantastic insights, Alex. To summarize for our audience: traditional, broad cybersecurity forums often fall short due to a lack of trust and relevance. A company-led forum, focused specifically on your own business value chain, is a powerful alternative that builds trust, encourages transparency, and leads to real, tangible security improvements for everyone involved.
Host: It’s a powerful reminder that collaboration isn’t just a buzzword; it’s a strategic imperative for survival in today’s digital world.
Host: Alex Ian Sutherland, thank you so much for your time and expertise today.
Expert: My pleasure, Anna.
Host: And thanks to all of you for listening to A.I.S. Insights, powered by Living Knowledge. Join us next time as we continue to bridge the gap between academia and business.
cybersecurity, information sharing, extended value chain, supply chain security, cyber resilience, forest products industry, inter-organizational collaboration